`(x+y-z)^2+(y-z)^2+2(x-y+z)`
`=x^2+y^2+z^2+2xy-2xz-2yz+y^2-2yz+z^2+2x-2y+2z`
`=x^2+2y^2+2z^2+2xy-2xz-4yz+2x-2y+2z`
`(x+y-z)^2+(y-z)^2+2(x-y+z)`
`=x^2+y^2+z^2+2xy-2xz-2yz+y^2-2yz+z^2+2x-2y+2z`
`=x^2+2y^2+2z^2+2xy-2xz-4yz+2x-2y+2z`
Cho x + y + z + 0 và x, y, z \(\ne\) 0. Rút gọn :
a/ \(P=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
b/ \(Q=\dfrac{\left(x^2+y^2-z^2\right)\cdot\left(y^2+z^2-x^2\right)\cdot\left(z^2+x^2-y^2\right)}{16\cdot x\cdot y\cdot z}\)
1. Cho biết x , y , z # 0 và \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\) .
Chứng minh rằng : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
2. Rút gọn : \(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) , biết rằng : x + y + z = 0
3. Cho 3x - y = 3z và 2x + y = 7z . Tính giá trị cua biểu thức :
M = \(\dfrac{x^2-2xy}{x^2+y^2}\) ( x # 0 ; y # 0 )
Rút gọn \(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
Biết rằng \(x+y+z=0\)
\(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
Rút gọn phân thức:
1, \(\dfrac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
2, \(\dfrac{x^4-y^4}{x^3+y^3}\)
3, \(\dfrac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2}\)
4, \(\dfrac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
5, \(\dfrac{x^3-7x+6}{x^2\left(x-3\right)^2+4x\left(3-x\right)^2+4\left(x-3\right)^2}\)
\(\dfrac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2}\)
Rút gọn phân thức
B= \(\dfrac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
1) Rút gọn các phân thức sau
a) A = \(\frac{\left(x+y+z\right)^2-3xy-3yz-3xz}{9xyz-3x^2-3y^2-3z^2}\)
b) B = \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{\left(x^2-y^2\right)^3-\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}\)
X3-y3+z3+3xyz/(x+y)2+(y+z)2+(z-x)2