Câu trả lời:
a)Xét 2 tam giác vuông ABC và DEC có
góc C chung
=> ABC~DEC(g.g)
b)TÍnh BC
Áp dụng định lí pi-ta-go vào tam giác vuông ABC
\(BC^2=AB^2+AC^2\)hay \(BC^2=3^2+5^2\)\(\Leftrightarrow\)\(BC^2=9+25\Rightarrow BC=\sqrt{9+25}\approx5,9\)
*TÍnh BD
Vì AD là tia fân giác của góc BAC nên ta có
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{3}{5}\)hay \(\frac{BD}{3}=\frac{DC}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{BD+DC}{3+5}=\frac{BC}{8}=\frac{5,9}{8}\)
\(\Rightarrow\)\(\frac{BD}{3}=\frac{5,9}{8}\Rightarrow BD=\frac{3.5,9}{8}=2,2125\)(cm)