Khi hai vật treo ngoài không khí ta có cân bằng lực:
\(P_1\cdot l_1=P_2\cdot l_2\Rightarrow l_1=l_2=\dfrac{l}{2}=\dfrac{80}{2}=40\left(cm\right)\)
Nhúng cả hai quả cầu ngập trong nước ta có:
\(\left(P_1-F_{A_1}\right)\cdot l_1'=\left(P_2-F_{A_2}\right)\cdot l_2'\)
Trong đó: \(\left\{{}\begin{matrix}l_1'=l_1+6x\left(cm\right)\\l_2'=l_2-6x\left(cm\right)\end{matrix}\right.\) và \(\left\{{}\begin{matrix}F_{A_1}=V_1\cdot d_0=\dfrac{P_1}{d_1}\cdot d_0\\F_{A_2}=V_2\cdot d_0=\dfrac{P_2}{d_2}\cdot d_0\end{matrix}\right.\)
Khi đó: \(\left(P_1-\dfrac{P_1}{d_1}\cdot d_0\right)\left(l_1+6x\right)=\left(P_2-\dfrac{P_2}{d_2}\cdot d_0\right)\left(l_2-6x\right)\)
\(\Rightarrow P_1\cdot l_1+P_1\cdot6x-\dfrac{P_1}{d_1}\cdot d_0\cdot l_1-\dfrac{P_1}{d_1}\cdot d_0\cdot6x=P_2\cdot l_2-P_2\cdot6x-\dfrac{P_2}{d_2}\cdot d_0\cdot l_2+\dfrac{P_2}{d_2}\cdot d_0\cdot6x\)
Mà \(\left\{{}\begin{matrix}P_1=P_2\\l_1=l_2=40cm=0,4m\end{matrix}\right.\)
Khi đó: \(6x-\dfrac{d_0\cdot l_1}{d_1}-\dfrac{6x\cdot d_0}{d_1}=-6x-\dfrac{d_0\cdot l_2}{d_2}+\dfrac{6x\cdot d_0}{d_2}\)
\(\Rightarrow6x-\dfrac{10^4\cdot0,4}{3\cdot10^4}-\dfrac{6x\cdot10^4}{3\cdot10^4}=-6x-\dfrac{10^4\cdot0,4}{3,9\cdot10^4}+\dfrac{6x\cdot10^4}{3,9\cdot10^4}\)
\(\Rightarrow x=\dfrac{1}{275}\left(m\right)\approx0,36\left(cm\right)\)