Chủ đề:
Bài 3: Nhị thức Niu-tơnCâu hỏi:
Tìm n biết n thỏa mãn: \(C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n=2^{20}-1\)
Cho hình vuông ABCD cạnh a tâm O. Gọi S là một điểm ở ngoài mặt phẳng ( ABCD ) sao cho SB=SD. Gọi M là điểm tùy ý trên AO với AM=x. Mặt phẳng alpha qua M song song với SA và BD cắt SO, SB, AB tại N, P, Q.
a) Tứ giác MNPQ là hình gì
b) Cho SA = a. Tính diện tích MNPQ theo a và x.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của AB, SC.
a) Tìm \(I=AN\cap\left(SBD\right)\)
b) Tìm \(K=MN\cap\left(SBD\right)\)
c) Tính tỉ số \(\dfrac{KM}{KN}\)
d) Chứng minh B, I, K thẳng hàng. Tính tỉ số \(\dfrac{IB}{IK}\)
Người ta dùng 18 quyển sách gồm 7 quyển sách toán, 6 quyển sách lý, 5 quyển sách hóa để làm phần thưởng cho 9 học sinh và mỗi học sinh nhận được 2 quyển sách khác nhau. Tên của 9 học sinh theo thứ tự là A, B, C, D, E, F, G, H, K. Tính xác suất để hai học sinh A và B nhận được phần thưởng giống nhau.