HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\sqrt{112}-7\sqrt{\dfrac{1}{7}}-14\sqrt{\dfrac{1}{28}}-\dfrac{21}{\sqrt{7}}=\sqrt{16.7}-\sqrt{49.\dfrac{1}{7}}-2.\sqrt{\dfrac{1}{4}.49.\dfrac{1}{7}}-\dfrac{3.7}{\sqrt{7}}\)
\(=4\sqrt{7}-\sqrt{7}-2.\dfrac{1}{2}\sqrt{7}-3\sqrt{7}=4\sqrt{7}-\sqrt{7}-\sqrt{7}-3\sqrt{7}=-\sqrt{7}\)
pt hoành độ giao điểm: \(x^2-2mx-2m+3=0\)
Để đường thẳng tiếp xúc với parabol thì pt có 1 nghiệm duy nhất
\(\Rightarrow\Delta'=0\)
\(\Delta'=m^2+2m-3=0\Rightarrow\left(m-1\right)\left(m+3\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
Ta có: \(AH^2=HD.HB=18.8=144\Rightarrow AH=12\) (cm)
\(\Rightarrow AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+18^2}=6\sqrt{13}\)
\(AB=\sqrt{12^2+8^2}=4\sqrt{13}\)
Ta có: \(DH^2=HA.HC\Rightarrow CH=\dfrac{DH^2}{HA}=\dfrac{18^2}{12}=27\)
\(\Rightarrow CD=\sqrt{CH^2+HD^2}=\sqrt{27^2+18^2}=9\sqrt{13}\)
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).AD=\dfrac{1}{2}\left(4\sqrt{13}+9\sqrt{13}\right).6\sqrt{13}\)
\(=507\left(cm^2\right)\)
Gọi độ dài quãng đường AB là a(km) \(\left(a>0\right)\)
Thời gian lúc đi là \(\dfrac{a}{16}\)(h)
Thời gian lúc về là \(\dfrac{a}{12}\) (h)
Đổi 10 phút = \(\dfrac{1}{6}\) giờ
Theo đề: \(\dfrac{a}{16}+\dfrac{1}{6}=\dfrac{a}{12}\Rightarrow\dfrac{3a+8}{48}=\dfrac{a}{12}=\dfrac{4a}{48}\Rightarrow3a+8=4a\)
\(\Rightarrow a=8\)
Gọi số tuổi của anh và em hiện nay lần lượt là a và b
Theo đề \(a=20\)
Trước đây...tuổi em \(\Rightarrow b=3\left(b-\left(20-b\right)\right)\Rightarrow b=3\left(2b-20\right)\Rightarrow5b=60\)
\(\Rightarrow b=12\)
Đặt \(4x^5+4x^4-5x^3+2x-2=A\)
Xét pt \(t^2+t-1=0\)
\(\Delta=b^2-4ac=1+4=5\Rightarrow\left[{}\begin{matrix}t=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-1-\sqrt{5}}{2}\\t=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
\(\Rightarrow x\) là nghiệm của pt \(t^2+t-1=0\Rightarrow x^2+x-1=0\)
\(A=4x^5+4x^4-4x^3-x^3-x^2+x+x^2+x-1-1\)
\(=4x^3\left(x^2+x-1\right)-x\left(x^2+x-1\right)+x^2+x-1-1=-1\)
\(\Rightarrow M=\left(-1\right)^{2018}+2019=2020\)
Vì AB là đường kính \(\Rightarrow\angle AKB=90\)
\(\Rightarrow\angle HKB+\angle HCB=90+90=180\Rightarrow BCHK\) nội tiếp
a) Ta có: \(\angle BEC=\angle BFC=90\Rightarrow BCCEF\) nội tiếp
Ta có: \(\angle AFC=\angle ADC=90\Rightarrow ACDF\) nội tiếp
b) Dễ dàng chứng minh được AEHF,EHDC nội tiếp
\(\Rightarrow\angle FEH=\angle FAH=\angle FCB=\angle HED\)
\(\Rightarrow EB\) là phân giác \(\angle DEF\)
Vì \(EF\parallel XY\) \(\Rightarrow\dfrac{AX}{AY}=\dfrac{AF}{AE}\left(1\right)\)
Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle AFE=\angle ACB\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AX}{AY}=\dfrac{AC}{AB}\)
mình vẽ bằng app geogebra geometry nhưng mà bạn dùng web cũng được
Từ A kẻ đường thẳng vuông góc với AN cắt CD tại Q
Ta có: \(\angle MAQ+\angle MCQ=90+90=180\Rightarrow AMCQ\) nội tiếp
\(\Rightarrow\angle AMQ=\angle ACQ=45\) mà \(\Delta MAQ\) vuông tại A
\(\Rightarrow\Delta MAQ\) vuông cân tại A \(\Rightarrow AM=AQ\)
Áp dụng hệ thức lượng vào tam giác vuông \(QAN\) có \(AD\bot NQ\)
\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AQ^2}+\dfrac{1}{AN^2}\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)