HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tính tổng các cạnh của một hình hộp chữ nhật, biết rằng thể tích của chúng bằng \(a^3\), diện tích toàn phần của nó bằng \(2ma^2\) và các cạnh lập thành một cấp số nhân
Chứng minh rằng dãy số \(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_{n+1}=\sqrt{u_n+2}\end{matrix}\right.\) tăng và bị chặn trên bởi 2
Giả sử a,b,c lập thành một cấp số cộng. Chứng minh rằng:
\(\dfrac{2}{9}.\left(a+b+c\right)^3=a^2.\left(b+c\right)+b^2.\left(a+c\right)+c^2.\left(a+b\right)\)
Cho dãy số (Un) xác định bởi:\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=-\dfrac{3}{2}u_n^2+\dfrac{5}{2}u_n+1\end{matrix}\right.\), \(\forall n\ge1\)
1) Hãy tính u2.u3,u4,u5
2) Dự đoán công thức của số hạng tổng quát Un
(Giải giúp mk ý 2 với ạ!!!)
Cho dãy số (Un) với: \(u_n=sin\dfrac{n\pi}{3}+cos\dfrac{n\pi}{6}\)
1) Hãy tính \(u_1,u_2,u_3,u_4,u_5\)
Chứng minh rằng: dãy số (Un) với \(U_n=\dfrac{n^2+1}{2n^2-3}\) là một dãy số bị chặn
Xét tính bị chặn của các dãy số sau:
a) \(u_n=\left(-1\right)^n.cos\left(\dfrac{\pi}{2n}\right)\)
b) \(t_n=\dfrac{\sqrt{2}}{5^n}\)