HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\sqrt{2x+4}=\sqrt{2(x+2)}\sqrt2 . \sqrt{x+2}\) với \(x < -2\)
- Nếu không hiểu thì bạn cứ hỏi nhé.
Có: \(BC^2=(5x)^2=25x^2\)
\(AB^2+AC^2=(3x)^2+(4x)^2=9x^2+16x^2=25x^2\)
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow \Delta ABC\) vuông tại \(A\). (Định lý Py-ta-go đảo)
Gọi \(M=\overline{abc} (a \ne b \ne c) \)
TH1: \(c=0 → c\) có 1 cách chọn.
\(a\) có 5 cách chọn.
\(b\) có 4 cách chọn.
\(\Rightarrow\) Có: \(1.5.4=20\) cách.
TH2: \(c \ne 0→ c\) có \(2\) cách chọn.
\(a\) có \(4\) cách chọn.
\(b\) có \(4\) cách chọn.
\(Rightarrow\) Có : \(2.4.4=32\) cách.
\(Rightarrow\) Có tất cả : \(20+32=52\) cách.
Vậy có thể lập được 52 số thỏa mãn yêu cầu.
Số cách chọn là: \(C_{5}^{2} . C_{4}^{3}=40\) (cách).
\(y=\dfrac{3sinx-cosx-4}{2sinx+cosx-3} \Leftrightarrow (2sinx+cosx-3)y=3sinx-cosx-4 \Leftrightarrow (3-2y)sinx+(y-1)cosx=4-3y \)
\(\Rightarrow (3-2y)^2+(y-1)^2 ≥ (4-3y)^2 \Leftrightarrow 5y^2−14y+10 ≥ 16−24y+9y^2 \Leftrightarrow 1 ≤ y ≤ \dfrac{3}{2}\)
Vậy hàm số không có giá trị nguyên.
\(cot M= \dfrac{MN}{PN}=\dfrac{2}{3}\)
a)
b)
+) Xét \(M(-3;1)\) có: \(1=\dfrac{-1}{3} . (-3)\) (đúng)
\(\Rightarrow M(-3;1) \in y=\dfrac{-1}{3} x\)
Tương tự, ta có: \(N (6;2) \notin y=\dfrac{-1}{3} x ; P(9;-3) \in y=\dfrac{-1}{3} x\).
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).