HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Để lọc các hàng có giá trị nhỏ nhất với điều kiện dữ liệu số
\(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right);\dfrac{1}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\Rightarrow\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\)
\(\Rightarrow2^{2x}+2^x+2\cdot2^x+2-3^y=89\Rightarrow4^x+3\cdot2^x+2-3^y=89\)
Ta thấy \(4\equiv1\left(mod3\right)\Rightarrow4^x\equiv1^x\equiv1\left(mod3\right);3\cdot2^x\equiv0\left(mod3\right);3^y\equiv0\left(mod3\right);2\equiv2\left(mod3\right)\Rightarrow4^x+3\cdot2^x-3^y+2\equiv1+0-0+2\equiv3\equiv0\left(mod3\right)\) Mà \(89\equiv2\left(mod3\right)\) \(\Rightarrow VT\ne VP\Rightarrow\)vô lí\(\Rightarrow\) ko tồn tại x,y Vậy...
ko cần đâu vì đề bài cho sẵn là phương trình có 2 nghiệm phân biệt \(x_1,x_2\) rồi
a Xét \(\Delta ABK\) và \(\Delta ACI\) có:
\(\Lambda BAK=\Lambda CAI\left(gt\right)\)
\(\Lambda AKB=\Lambda AIC=90^0\left(gt\right)\)
\(\Rightarrow\Delta ABK\sim\Delta ACI\left(g.g\right)\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AI}\Rightarrow AB\cdot AI=AC\cdot AK\)
b Ta có \(DE//BC\) \(\Rightarrow ID//BC;IE//BC\)
Áp dụng hệ quả định lí Ta lét vào các tam giác có:
\(\Delta AMB\left(ID//BM\right)\Rightarrow\dfrac{ID}{BM}=\dfrac{AD}{AB}\left(1\right)\)
\(\Delta AMC\left(IE//CM\right)\Rightarrow\dfrac{IE}{CM}=\dfrac{AE}{AC}\left(2\right)\)
\(\Delta ABC\left(AE//BC\right)\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(3\right)\)
Từ (1), (2), (3) \(\Rightarrow\dfrac{ID}{BM}=\dfrac{IE}{CM};BM=CM\Rightarrow ID=IE\)
Để \(f\left(x\right)>0\Rightarrow\Delta'>0\Rightarrow\left(m-2\right)^2-2\left(m^2+2\right)>0\Leftrightarrow m^2-4m+4-2m^2-4>\Leftrightarrow-m^2-4m>0\Leftrightarrow m^2+4m< 0\Leftrightarrow m\left(m+4\right)< 0\Leftrightarrow-4< m< 0\)
Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5 nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)
Theo hệ thức Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{3}\left(1\right)\\x_1x_2=\dfrac{m}{3}\left(2\right)\end{matrix}\right.\)
Ta có \(6x_1+x_2=0\)\(\Rightarrow5x_1+\left(x_1+x_2\right)=0\Rightarrow5x_1+\dfrac{5}{3}=0\Leftrightarrow x_1=-\dfrac{1}{3}\) Thay vào (1) ta được:
\(x_2-\dfrac{1}{3}=\dfrac{5}{3}\Rightarrow x_2=2\)
Thay \(x_1=-\dfrac{1}{3};x_2=2\) vào (2) ta được:
\(-\dfrac{2}{3}=\dfrac{m}{3}\Rightarrow m=-2\)
A đúng