HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Mọi người giúp em với em cần rất gấp ạTìm GTNN của M=\(\dfrac{2\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\) với x≥0,x≠1,x≠4
tìm GTNN của M=\(\dfrac{2\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\) với x≥0,x≠1,x≠4MN giúp e với e cần rất gấp ạ
giải gấp cho em bài này với ạ cho a,b,c>0 thỏa mãn a+b+c=3.CM
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le3\sqrt{2}\)
Đề sai bạn nhé
Với x,y,z là 3 số thực dương thỏa mãn x+y+z=3,tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{z}+\sqrt{x}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)
viết các số thực dương x,y,z thỏa mãn xyz=1,chứng minh rằng
\(\sqrt{\dfrac{x^4+y^4+z}{3z^3}}+\sqrt{\dfrac{y^4+z^4+x}{3x^3}}+\sqrt{\dfrac{z^4+x^4+y}{3y^3}}\ge x^2+y^2+z^2\)
Mọi người giúp em với em cần gấp ạ
cho các số thực dương x,y,z thỏa mãn \(x+y+z=\dfrac{3}{xyz}\).CMR
\(\left(2x^2-xy+2y^2\right)\left(2y^2-yz+2z^2\right)\left(2z^2-zx+2x^2\right)\ge27\)
cho a,b,c là độ dài 3 cạnh của 1 tam giác,CMR
\(\dfrac{a}{\sqrt[3]{b^3+c^3}}+\dfrac{b}{\sqrt[3]{c^3+a^3}}+\dfrac{c}{\sqrt[3]{a^3+b^3}}< 2\sqrt[3]{4}\)
MN giúp em với !!!!!