HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Áp dụng BĐT Minicopski, ta có:
\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}\ge\sqrt{\left(a+b\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2}\\ \Rightarrow P\ge\sqrt{4^2+\left(\dfrac{4}{a+b}\right)^2}=\sqrt{16+\left(\dfrac{4}{4}\right)^2}=\sqrt{17}\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=2\)
PT giao Ox: \(y=0\Leftrightarrow x=\dfrac{m}{3m-1}\Leftrightarrow A\left(\dfrac{m}{3m-1};0\right)\Leftrightarrow OA=\left|\dfrac{m}{3m-1}\right|\)
PT giao Oy: \(x=0\Leftrightarrow y=m\Leftrightarrow B\left(0;m\right)\Leftrightarrow OB=\left|m\right|\)
Kẻ \(OH\bot\left(d\right)\Rightarrow OH=\dfrac{1}{5}\)
Áp dụng HTL, ta có: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)
\(\Rightarrow\dfrac{\left(3m-1\right)^2}{m^2}+\dfrac{1}{m^2}=25\\ \Rightarrow\dfrac{9m^2-6m+2}{m^2}=25\\ \Rightarrow25m^2=9m^2-6m+2\\ \Rightarrow8m^2+3m-1=0\\ \Rightarrow\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{41}}{2}\\m=\dfrac{-3-\sqrt{41}}{2}\end{matrix}\right.\)
\(\Rightarrow29y+\left(10+11+12+...+38\right)=197\\ \Rightarrow29y+\dfrac{\left(38+10\right)\cdot29}{2}=197\\ \Rightarrow29y+696=197\\ \Rightarrow29y=-499\\ \Rightarrow y=-\dfrac{499}{29}\)
\(\Rightarrow\left(21n+18\right)⋮\left(3n-2\right)\\ \Rightarrow\left(21n-14+32\right)⋮\left(3n-2\right)\\ \Rightarrow\left[7n\left(3n-2\right)+32\right]⋮\left(3n-2\right)\\ \Rightarrow3n-2\inƯ\left(32\right)=\left\{1;2;4;8;16;32\right\}\\ \Rightarrow3n\in\left\{3;4;6;10;18;34\right\}\\ \Rightarrow n\in\left\{1;2;6\right\}\left(n\in N\right)\)
\(Ba+2H_2O\to Ba(OH)_2+H_2\uparrow\\ n_{Ba}=\dfrac{13,7}{137}=0,1(mol)\\ a,n_{H_2}=n_{Ba}=0,1(mol)\\ \Rightarrow m_{H_2}=0,1.2=0,2(g)\\ b,n_{Ba(OH)_2}=n_{Ba}=0,1(mol)\\ \Rightarrow m_{Ba(OH)_2}=0,1.171=17,1(g)\)
\(\dfrac{x}{4}=\dfrac{2y+1}{3}=\dfrac{x-2y-1}{y}=\dfrac{x-2y-1-x+2y+1}{4-3-y}=\dfrac{0}{1-y}=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\2y+1=0\\x-2y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(PT\Rightarrow\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+3}{63}+1\right)-\left(\dfrac{x+5}{61}+1\right)-\left(\dfrac{x+7}{59}+1\right)=0\\ \Rightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}-\dfrac{x+66}{61}-\dfrac{x+66}{59}=0\\ \Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\\ \Rightarrow x+66=0\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\ne0\right)\\ \Rightarrow x=-66\)
Ta có \(2S=2^n+2\cdot2^{n-1}+3\cdot2^{n-2}+...+\left(n-1\right)\cdot2^2+2n\\ \Rightarrow2S-S=2^n+\left(2\cdot2^{n-1}-2^{n-1}\right)+\left(3\cdot2^{n-2}-2\cdot2^{n-2}\right)+...+2n-n\\ \Rightarrow S=2^n+2^{n-1}+2^{n-2}+...+2^2+2-n\\ \Rightarrow S=2\left(2^n-1\right)-n=2^{n+1}-\left(n+2\right)\)
\(a,M=12-x+x-73+96+x-23=x+12\\ M=101+12=113\\ b,N=3x-2y+5x-y-7y+2x=10x-10y\\ N=10\cdot2021-10\cdot2021=0\)
\(a:15\) dư 13 \(\Rightarrow a=15k+13\left(k\in N\text{ }\right)\)
\(b:12\) dư 8 \(\Rightarrow b=12k+8\left(k\in N\right)\)
\(\Rightarrow a+b=15k+12k+13+8=27k+21=3\left(9k+7\right)⋮3\)