HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Từ giả thiết x2 + y2 = 1, suy ra x2 \(\le\)1 => -1 \(\le x\le\)1 (1)
Ta có P(x,y) = x2 + y2 - 4x = 1 - 4x (2)
Từ (1), (2) suy ra \(-3=1-4\cdot1\le P\le1-4\cdot\left(-1\right)=5\)
Vậy Max P = 5, Min P = -3.
Ta có: \(A\cdot\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)=\left(25-x^2-15+x^2\right)=10\)
Do đó A = 10/2 = 5
342 nhe
bằng 226/15 bạn nhé
30+30=60
k mk đi
1/15=1+15=16 dễ vậy ko biết
a)Ta có:
\(x^5+x^2=x^5-x^4+x^3+x^4-x^3+x^2\)
\(=x^2\left(x^3-x^2+x\right)+x\left(x^3-x^2+x\right)\)
\(=\left(x^2+x\right)\left(x^3-x^2+x\right)\)
Thay vào A ta có:\(A=\frac{x^5+x^2}{x^3-x^2+x}=\frac{\left(x^2+x\right)\left(x^3-x^2+x\right)}{x^3-x^2+x}=x^2+x\)
b)\(A-\left|A\right|=0\Leftrightarrow x^2+x-\left|x^2+x\right|=0\)
\(\left|x^2+x\right|=x^2+x\)\(\Leftrightarrow\orbr{\begin{cases}x^2+x=x^2+x\\x^2+x=-x^2-x\end{cases}}\)
giải tiếp chắc dễ
c)\(A=x^2+x\)\(=x^2-x+\frac{1}{4}-\frac{1}{4}\)
\(=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu = khi \(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy MinA=\(-\frac{1}{4}\Leftrightarrow x=-\frac{1}{2}\)
3,85x1,2+4,97x100=4,62+497
=501,62
n vô số
Thắng làm đúng nhưng bạn làm khó hiểu quá