\(x^2-2\left(m-1\right)x+3m-3=0\left(1\right)\)
\(\sqrt{x_1-1}+\sqrt{x_2-1}=4\left(2\right)\)
\(\left(1\right);\left(2\right)\) có \(2\) nghiệm phân biệt khi \(\left(1\right)\) có \(2\) nghiệm phân biệt \(x_1>x_2>1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-3m+3>0\\\left(x_1-1\right)+\left(x_2-1\right)>0\\\left(x_1-1\right)\left(x_2-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+4>0\\x_1+x_2-2>0\\x_1x_2-\left(x_1+x_2\right)+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\cup m>4\\2m-2-2>0\\3m-3-2m+2+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\cup m>4\\m>2\\m>0\end{matrix}\right.\) \(\Leftrightarrow m>4\left(3\right)\)
\(\left(2\right)\Rightarrow x_1-1+x_2-1+2\sqrt{\left(x_1-1\right).\left(x_2-1\right)}=16\)
\(\Leftrightarrow x_1+x_2-2+2\sqrt{x_1x_2-\left(x_1+x_2\right)+1}=16\)
\(\Leftrightarrow2m-2-2+2\sqrt{3m-3-2m+2+1}=16\)
\(\Leftrightarrow2m-4+2\sqrt{m}=16\)
\(\Leftrightarrow\sqrt{m}=10-m\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-m\ge0\\m=100-20m+m^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\le10\\m^2-21m+100=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le10\\m=\dfrac{21\pm\sqrt{41}}{2}\end{matrix}\right.\) \(\Leftrightarrow m=\dfrac{21-\sqrt{41}}{2}\) thỏa \(\left(3\right)\)
Vậy \(m=\dfrac{21-\sqrt{41}}{2}\) thỏa mãn yêu cầu đề bài