HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Rút gọn biểu thức:
A=\(\left(\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right):\dfrac{x-9}{\sqrt{x}-3}\) với \(x\ge0,x\ne4,x\ne9\)
Giải phương trình
1,1x+1,12(360000-x)=400000
B=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}\) với x\(\ge\)0 và x\(\ne\)+-1.Tìm x để B<1
Phương trình \(x^2-x-3=0\) có 2 nghiệm x\(_1\),x\(_2\).Tính tổng \(S=\dfrac{1}{x1}+\dfrac{1}{x2}\)
Cho biểu thức:
A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}}{x-1}\)
a.Rút gọn biểu thức A
b.Tìm m để phương trình \(mA=\sqrt{x}-2\) có 2 nghiệm phân biệt
A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)với x\(\ge\)0;\(x\ne\)1
Tìm x để A <\(\dfrac{3}{5}\)
Cho phương trình \(x^2-2\left(m-1\right)x-m-3=0\)
a.Giải phương trình với m=-3
b.Tìm m để phương trình (1) có 2 nghiệm thỏa mãn \(x^2_1+x^2_2=10\)
Rút gọn biểu thức :
N=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}}{x-\sqrt{x}}\) với x>0,x\(\ne\)1
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x+3y=9\\2x-5y=-4\end{matrix}\right.\)