Cho hpt \(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
a) Tìm m để hpt có nghiệm duy nhất (x,y) và tìm nghiệm (x,y) đó
b) Với (x,y) là nghiệm duy nhất
1. Tìm đẳng thức liên hệ giữa x,y không phụ thuộc vào m
2. Tìm m để \(x^2+y^2\) đạt GTNN
3. Tìm m để \(xy\) đạt GTLN
Cho hcn ABCD có AB<AD. Trên AD lấy E sao cho BE=BC. Tia phân giác của \(\widehat{CBE}\) cắt CD tại F. Đường thẳng EF cắt đường thẳng AB tại M.
1) Đường thẳng CM cắt đường thẳng BD tại N. C/m \(\widehat{BNM}=90^o\)
2) Gọi EI là phân giác của \(\widehat{BEM}\left(I\in BM\right)\). C/m \(\dfrac{1}{2AE^2}=\dfrac{1}{EI^2}-\dfrac{1}{EM.EB}\)
Cho \(\Delta ABC\) nhọn (AB<AC) nội tiếp đường tròn (O). các đường cao BE, CF cắt nhau tại H. Gọi D là giao điểm của AH và BC. Tiếp tuyến tại A của (O) cắt BC tại F
a) Chứng minh tứ giác AEHF nội tiếp và \(\widehat{EAH}=\widehat{EBC}\)
b) Đường kính AK của (O) cắt EF tại M, cắt BC tại N. Tiếp tuyến tại K của (O) cắt AH tại Q. Chứng minh HM // QN
c) Gọi I là trung điểm BC. Đường tròn đường kính AH cắt AI tại P. Chứng minh SA = SP
Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là tiếp điểm). MO cắt AB tại I. Kẻ đường kính BC của đường tròn, MC cắt đường tròn tại điểm thứ hai là K.
a) Chứng minh I là trung điểm AB.
b) Chứng minh \(MA^2=MK.MC\) và \(\Delta MKI\) đồng dạng với \(\Delta MOC\)
c) Lấy điểm D trên cung lớn AB (DB < DA), kẻ \(BH\perp AD\) tại H. Gọi E là giao điểm của MO với (O). Qua D kẻ đường thẳng vuông góc với ED cắt tia BH tại P. Chứng minh: \(BP.OA=HP.OM\)