HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(D=R\backslash\left\{0\right\}\)
\(\sin^3x+\cos^3x=\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cos x+\cos^2x\right)=\left(\sin x+\cos x\right)\left(1-\sin x\cos x\right)\)
\(2-\sin2x=2-2\sin x\cos x=2\left(1-\sin x\cos x\right)\)
\(\Rightarrow y=\dfrac{\left(\sin x+\cos x\right)\left(1-\sin x\cos x\right)}{2\left(1-\sin x\cos x\right)}=\dfrac{\sin x+\cos x}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}y'=\dfrac{2\cos x-2\sin x}{4}=\dfrac{1}{2}\left(\cos x-\sin x\right)\Rightarrow y'^2=\dfrac{1}{4}\left(\cos^2x-2\sin x\cos x+\sin^2x\right)=\dfrac{1}{4}\left(1-2\sin x\cos x\right)\\y''=-\dfrac{1}{2}.\sin x-\dfrac{1}{2}\cos x\Rightarrow y''^2=\left[-\dfrac{1}{2}\left(\sin x+\cos x\right)\right]^2=\dfrac{1}{4}\left(1+2\sin x\cos x\right)\end{matrix}\right.\)
\(\Rightarrow2\left(y'^2+y''^2\right)=2\left[\dfrac{1}{4}\left(1-\sin2x\right)+\dfrac{1}{4}\left(1+\sin2x\right)\right]=1\)
Đa tạ đã lượng thứ :)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{4x^2+1-\left(2x-5\right)^2}{\sqrt{4x^2+1}+2x-5}=\lim\limits_{x\rightarrow+\infty}\dfrac{26+20x}{\sqrt{4x^2+1}+2x-5}=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{26}{x}+\dfrac{20x}{x}}{\sqrt{\dfrac{4x^2}{x^2}+\dfrac{1}{x^2}}+\dfrac{2x}{x}-\dfrac{5}{x}}=\dfrac{20}{2+2}=5\)
P/s: thứ lỗi tại hạ đang hơi buồn ngủ nên nhìn lộn
5/ tìm khoảng cách từ M đến mp ABC, nghĩa là tÌm khoảng cách từ M đến mp ABCD
\(SM\cap\left(ABCD\right)=\left\{D\right\}\Rightarrow\dfrac{d\left(S,\left(ABCD\right)\right)}{d\left(M,\left(ABCD\right)\right)}=\dfrac{DS}{DM}=2\)
Vì chóp SABCD đều nên SO sẽ chính là đường cao của chóp
\(\Rightarrow d\left(S,\left(ABCD\right)\right)=SO\)
\(\left(\left(SCD\right),\left(ABCD\right)\right)=\widehat{SNO}=60^0\Rightarrow SO=ON.\tan60^0=\dfrac{a}{2}.\sqrt{3}=\dfrac{a\sqrt{3}}{2}\)
\(\Rightarrow d\left(M,\left(ABCD\right)\right)=\dfrac{a\sqrt{3}}{2.2}=\dfrac{a\sqrt{3}}{4}\)
Cái chữ nhìn muốn lé mắt :v
4/ Để tìm \(d\left(S,\left(ABC\right)\right)\) , ta phải hạ được đường vuông góc từ S xuống mp ABC. Nhận thấy \(\left(SAB\right)\perp\left(ABC\right)\) nên ta sẽ nghĩ ngay đến việc hạ đường vuông góc từ S xuống AB. Bởi dựa vô định lý sau: Khi 2 mp vuông góc thì mọi đường thẳng thuộc mp này và vuông góc với giao tuyến 2 mp thì nó sẽ vuông góc với mp còn lại.
Nên từ S ta kẻ \(SH\perp AB;SH\cap AB=\left\{H\right\}\Rightarrow SH\perp\left(ABC\right)\)
\(\Rightarrow SH=d\left(S,\left(ABC\right)\right)\)
\(SH=\dfrac{AS.SB}{\sqrt{AS^2+SB^2}}=....\)
\(u=e^x\Rightarrow du=e^xdx\Rightarrow dx=\dfrac{du}{e^x}\)
\(\Rightarrow\int f\left(x\right)dx=\int\dfrac{du}{2u^2+3u}\)
\(\dfrac{1}{2u^2+3u}=\dfrac{A}{u}-\dfrac{B}{2u+3}=\dfrac{A\left(2u+3\right)-Bu}{2u^2+3u}=\dfrac{\left(2A-B\right)u+3A}{2u^2+3u}\)
\(\Rightarrow\left(2A-B\right)u+3A=1\Rightarrow\left\{{}\begin{matrix}2A-B=0\\3A=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A=\dfrac{1}{3}\\B=\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\int\dfrac{du}{2u^2+3u}=\dfrac{1}{3}\int\left(\dfrac{1}{u}-\dfrac{2}{2u+3}\right)du=\dfrac{1}{3}\left[lnu-ln\left(2u+3\right)\right]+C\)
\(\Rightarrow F\left(x\right)=\dfrac{1}{3}\left[ln\left(e^x\right)-ln\left(2e^x+3\right)\right]+C=\dfrac{1}{3}\left[x-ln\left(2e^x+3\right)\right]+C\)
\(F\left(0\right)=10\Rightarrow\dfrac{1}{3}\left[x-ln\left(2e^x+3\right)\right]+C=10\Rightarrow C=\dfrac{ln5}{3}+10\)
\(\Rightarrow F\left(x\right)=\dfrac{1}{3}\left[x-ln\left(2e^x+3\right)\right]+\dfrac{ln5}{3}+10\)
\(u=2x\Rightarrow du=2dx\Rightarrow d\left(2x\right)=2dx\Leftrightarrow dx=\dfrac{1}{2}d\left(2x\right)\)
\(\Rightarrow\int f\left(2x\right)dx=\dfrac{1}{2}\int f\left(2x\right).d\left(2x\right)=\dfrac{1}{2}.\left(2.2x.e^{2.2x+1}\right)+C=2x.e^{4x+1}+C\)
Cảm ơn ý kiến của bạn!