HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cho biểu thức p=\(\left(\dfrac{b-a}{\sqrt{b}-\sqrt{a}}-\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}\right):\dfrac{\left(\sqrt{b}-\sqrt{a}\right)^2+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)với a lớn hơn bằng 0,b lớn hơn bằng 0,a khác b
a rút gọn p
b cm p lớn hơn bằng 0
cho biểu thức p=\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\)với x>0;x khác 4,x khác 9 .rút gọn p
cho x,y,z thỏa mãn x+y+z=xyz.tìm giá trị nhỏ nhất của biểu thức T=xyz
tìm giá trị nhỏ nhất của các biểu thức sau:
a A=\(\dfrac{\sqrt{x-9}}{5x}\)
b B=\(\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
a A=\(\dfrac{x^3+2021}{x}\) với x>0
b B=\(4x+\dfrac{25}{x-1}\)với x>1
c C=\(\dfrac{3x^4+16}{x^3}\)với x>0
d D=\(x+\dfrac{1}{x}\)với x lớn hơn bằng 2
e E=\(\dfrac{9x}{2-x}+\dfrac{2}{x}\)với 0<x<2
f F=\(\dfrac{3}{1-x}+\dfrac{4}{x}\)với 0<x<1
cho hai số dương a,b thỏa mãn a+b=2.chứng minh rằng:
a \(a^2+b^2\) lớn hơn bằng 2
b \(a^4+b^4\) lớn hơn bằng 2
c \(a^2b^2\left(a^2+b^2\right)\) bé hơn bằng 2
d \(8\left(a^4+b^4\right)+\dfrac{1}{ab}\) lớn hơn bằng 17
chứng minh rằng:\(\dfrac{1}{\sqrt{1.2021}}+\dfrac{1}{\sqrt{2.2020}}+\dfrac{1}{\sqrt{3.2019}}+...+\dfrac{1}{\sqrt{2021.1}}>\dfrac{2021}{1011}\)