HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tìm x, y thỏa mãn phương trình \(x^2-x^2y-y+8x+7=0\) sao cho y đạt giá trị lớn nhất.
Tìm x, y thỏa mãn phương trình \(x^2y^4-16xy^3+68y^2-4xy+x^2=0\)
Tìm m để hai phương trình sau có nghiệm chung
a \(2x^2+\left(3m-1\right)x-3=0\) và \(6x^2-\left(2m-1\right)x-1=0\)
b \(x^2-mx+2m+1=0\) và \(mx^2-\left(2m+1\right)x-1=0\)
Cho các phương trình\(x^2+bx+c=0\) và \(x^2+cx+b=0\) trong đó \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\)
Chứng minh
rằng ít nhất một trong các phương trình trên có nghiệm.
Chứng minh rằng với a, b, c khác 0, ít nhất một trong các phương trình sau có nghiệm.
\(ax^2+2bx+c=0\),\(bx^2+2cx+a=0\),\(cx^2+2ax+b=0\)
Tìm điều kiện của a, b, c để các phương trình sau có nghiệm kép:
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)=0\)
Cho a, b, c là độ dài các cạnh của một tam giác. Chứng minh các phương trình sau cónghiệm
a \(a^2x^2+\left(a^2+b^2-c^2\right)x+b^2=0\)
b \(x^2+\left(a+b+c\right)x+\left(ab+bc+ac\right)=0\)