Bài 1:
Ta có : \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Đặt \(y=x^4-11x^2+19\), ta có : \(\left(y-9\right)\left(y+9\right)< 0\)
\(\Leftrightarrow y^2< 81\Leftrightarrow-9< y< 9\) \(\Leftrightarrow\hept{\begin{cases}y>-9\left(1\right)\\y< 9\left(2\right)\end{cases}}\)
Giải (1) được : \(x^4-11x^2+28>0\) \(\Leftrightarrow\left(x^2-7\right)\left(x^2-4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2>7\\x^2< 4\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\)hoặc \(-2< x< 2\)
Giải (2) được :
\(\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>10\end{cases}}\)(loại) hoặc \(1< x^2< 10\)(nhận)
\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 10\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x< -1\\x>1\end{cases}}\)và \(-\sqrt{10}< x< \sqrt{10}\)
\(\Rightarrow\orbr{\begin{cases}-\sqrt{10}< x< -1\\1< x< \sqrt{10}\end{cases}}\)
Kết hợp (1) và (2) : \(-2< x< -1\);;\(1< x< 2\); \(\sqrt{7}< x< \sqrt{10}\); \(-\sqrt{10}< x< -\sqrt{7}\)
Suy ra các giá trị nguyên của x là : \(x\in\left\{-3;3\right\}\)