HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
tìm giới hạn \(\lim\limits_{x\rightarrow+\infty}\left(x+1-\sqrt{x^2-x+2}\right)\)
cho m,n là các số thực khác 0. nếu gioi hạn \(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx+n}{x-1}=3\) thì m.n=?
cho \(A=\lim\limits_{x\rightarrow+\infty}\dfrac{mx+2006}{x+\sqrt{x^2+2007}}\). tìm m để A=0
tính gioi han \(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{A^2_n}+\dfrac{1}{A^2_n}+...+\dfrac{1}{A^2_n}\right)\)
tìm gioi han \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1.2x+1}.\sqrt[3]{2.3x+1}.\sqrt[4]{3.4x+1}...\sqrt[2018]{2017.2018x+1}}{x}\)
biết \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{49x^2+x}-\sqrt{16x^2+x}-\sqrt{9x^2+x}\right)=\dfrac{a}{b}\). tìm a,b biết a/b tối giản
cho f(x) là 1 đa thức thoa man \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{x-1}=24\). tính \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{\left(x-1\right)\left(\sqrt{2f\left(x\right)+4}+6\right)}\)
cho \(\lim\limits_{x\rightarrow0}\left(\dfrac{x}{\sqrt[7]{x+1}\sqrt{x+4}-2}\right)=\dfrac{a}{b}\). tìm a,b biết a/b tối giản