Bài 1: Giới hạn của dãy số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

cho \(\lim\limits_{x\rightarrow0}\left(\dfrac{x}{\sqrt[7]{x+1}\sqrt{x+4}-2}\right)=\dfrac{a}{b}\). tìm a,b biết a/b tối giản

Nguyễn Việt Lâm
27 tháng 1 2021 lúc 20:04

\(\lim\limits_{x\rightarrow0}\dfrac{x}{\sqrt[7]{x+1}\left(\sqrt[]{x+4}-2\right)+2\left(\sqrt[7]{x+1}-1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x}{\dfrac{x\sqrt[7]{x+1}}{\sqrt[]{x+4}+2}+\dfrac{2x}{\sqrt[7]{\left(x+1\right)^6}+\sqrt[7]{\left(x+1\right)^5}+\sqrt[7]{\left(x+1\right)^4}+\sqrt[7]{\left(x+1\right)^3}+\sqrt[7]{\left(x+1\right)^2}+\sqrt[7]{x+1}+1}}\)

\(=\dfrac{1}{\dfrac{1}{2+2}+\dfrac{2}{1+1+1+1+1+1+1}}=\dfrac{28}{15}\)


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết