a.
\(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}.\left(2^4+1\right)=2^{20}.17\)
Do 17 chia hết 17 nên \(2^{20}.17\) chia hết 17
Vậy \(8^8+2^{20}\) chia hết 17
b.
Ta có:
\(1+7+7^2+7^3+\cdots+7^{100}+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+\cdots+\left(7^{100}+7^{101}\right)\)
\(=\left(1+7\right)+7^2.\left(1+7\right)+\cdots+7^{100}.\left(1+7\right)\)
\(=8+7^2.8+\cdots+7^{100}.8\)
\(=\left(1+7^2+\cdots+7^{100}\right).8\) chia hết cho 8
c.
\(1+4+4^2+4^3+4^4+4^5+\cdots+4^{2010}+4^{2011}+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+\cdots+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+\cdots+4^{2010}.\left(1+4+4^2\right)\)
\(=21+4^3.21+\cdots+4^{2010}.21\)
\(=\left(1+4^3+4^{2010}\right).21\) chia hết 21