\(A=\dfrac{1}{3^2}+\dfrac{3}{3^4}+\dfrac{5}{3^6}+...+\dfrac{99}{3^{100}}\)
\(9A=1+\dfrac{3}{3^2}+\dfrac{5}{3^4}+...+\dfrac{99}{3^{98}}\)
\(9A-A=1+\left(\dfrac{3}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{5}{3^4}-\dfrac{3}{3^4}\right)+...+\left(\dfrac{99}{3^{98}}-\dfrac{97}{3^{98}}\right)-\dfrac{99}{3^{199}}\)
\(8A=1+\dfrac{2}{3^2}+\dfrac{2}{3^4}+...+\dfrac{2}{3^{98}}-\dfrac{99}{3^{100}}\)
\(8A< 1+2.\left(\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{98}}\right)\)
Xét \(B=\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{98}}\)
\(9B=1+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{96}}\)
\(9B-B=1-\dfrac{1}{3^{98}}\)
\(8B=1-\dfrac{1}{3^{98}}\)
\(B=\dfrac{1}{8}-\dfrac{1}{8.3^{98}}\)
\(\Rightarrow8A< 1+2.\left(\dfrac{1}{8}-\dfrac{1}{8.3^{98}}\right)\)
\(\Rightarrow8A< 1+2.\dfrac{1}{8}\)
\(\Rightarrow8A< \dfrac{5}{4}\)
\(\Rightarrow A< \dfrac{5}{32}\)