Bài 1: Thực hiện phép tính
a) \(\dfrac{45}{19}-\left(\dfrac{1}{2}+\left(\dfrac{1}{3}+\left(\dfrac{1}{4}\right)^{-1}\right)^{-1}\right)^{-1}\)
b) \(\dfrac{\dfrac{1}{3.8}+\dfrac{1}{8.13}+\dfrac{1}{13.18}+...+\dfrac{1}{33.38}}{\dfrac{21}{3.10}+\dfrac{15}{10.15}+\dfrac{27}{15.24}+\dfrac{9}{24.27}+\dfrac{33}{27.38}}\)
Bài 2:
1) Tìm x, y biết \(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)
2) Tìm GTNN của A biết \(A=\left|4x+3\right|+4x-15\)
3) So sánh \(\sqrt{37}-\sqrt{8}-\sqrt{2018}>-42\)
4) Tìm \(x,y\in N\) biết \(25-y^2=6\left(x-2009\right)^2\)
Bài 3:
1) Tìm \(x\in Q\) sao cho \(x+\dfrac{1}{x}\in Z\)
2) Cho a, b, c không âm thỏa mãn \(a+3c=2016\) và \(a+2b=2017\) . Tìm GTLN của biểu thức: \(P=a+b+c\)
Bài 4:
Cho hàm số \(y=m\left|x\right|\) với m là hằng số.
1) Tìm m biết rằng đồ thị hàm số đi qua điểm \(Q\left(-2;-4\right)\)
2) Với m tìm được, hãy:
a) Vẽ đồ thị của hàm số
b) Tìm trên đồ thị hàm số các điểm \(M\left(x_0;y_0\right):x_0-y_0=5\)
Bài 5:
Cho \(\Delta ABC:\widehat{A}=90^0\). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD
b) \(\Delta BDE\) cân
c) \(\widehat{EIC}=60^0\) và IA là tia phân giác của \(\widehat{DIE}\)
Xin chào tất cả các bạn, mình tên A Tinh, rất vui được làm quen với các bạn.
Hôm nay, mình sẽ phải nói lời tạm biệt với hoc24.vn - website mà mình thương yêu nhất, để chuyển sang một website khác. Tuy thời gian mà mình tương tác trên page không lâu nhưng cũng thành thực cảm ơn tất cả các bạn tất cả thời gian qua đã giúp đỡ mình trong học tập. Xin chào và tạm biệt tất cả các bạn!