HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Bài 6 : \(C_4H_{10}\) : \(CH_3-CH_2-CH_2-CH_3\)
\(C_5H_{12}\) : CH3 – CH2 – CH2 – CH2 – CH3
ĐK : a;b;c > 0
Ta có : \(ab+bc+ac=1\) \(\Leftrightarrow c\left(a+b\right)=1-ab\Leftrightarrow c=\dfrac{1-ab}{a+b}\)
Khi đó : \(c^2+1=\left(\dfrac{1-ab}{a+b}\right)^2+1\) \(=\dfrac{\left(ab\right)^2+1+a^2+b^2}{\left(a+b\right)^2}=\dfrac{\left(a^2+1\right)\left(b^2+1\right)}{\left(a+b\right)^2}\)
\(\Rightarrow\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\)
Ta có : \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}=\dfrac{ab^2+a^2b+a+b}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(ab+1\right)\left(a+b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
Suy ra : \(A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}-\dfrac{1}{c^2+1}=\dfrac{\left(a+b\right)\left(ab+1-a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}=\dfrac{\left(a+b\right)\left(1-a\right)\left(1-b\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)
AD BĐT Cauchy ta được : \(\left(a+b\right)\left[\left(1-a\right)\left(1-b\right)\right]\le\dfrac{\left[a+b+\left(1-a\right)\left(1-b\right)\right]^2}{4}=\dfrac{\left(1+ab\right)^2}{4}\)
\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(ab+1\right)^2\) ( theo BCS )
Suy ra : \(A\le\dfrac{1}{4}\)
ĐKXĐ : \(x\ge2\)
Ta có : \(A=\dfrac{x+3\sqrt{x-2}}{x+4\sqrt{x-2}+1}\) . Đặt t = \(\sqrt{x-2}\ge0\) \(\Rightarrow x=t^2+2\)
Khi đó : \(A=\dfrac{t^2+2+3t}{t^2+4t+3}=\dfrac{\left(t+2\right)\left(t+1\right)}{\left(t+3\right)\left(t+1\right)}=\dfrac{t+2}{t+3}=1-\dfrac{1}{t+3}\ge1-\dfrac{1}{3}=\dfrac{2}{3}\)
" = " \(\Leftrightarrow t=0\Leftrightarrow x=2\)
Vậy ...
Cần có số kg ngô : 17 : 63% = \(\dfrac{1700}{63}\left(kg\right)\)
\(P=\dfrac{x^4+x^3-3x-1}{x^2+x+1}=\dfrac{\left(x^2-1\right)\left(x^2+x+1\right)-2x}{x^2+x+1}=x^2-1-\dfrac{2x}{x^2+x+1}\)
Vì x \(\in Z\) nên để P \(\in Z\) thì : \(\dfrac{x}{x^2+x+1}\in Z\)
Đặt \(A=\dfrac{x}{x^2+x+1}\) . Với x = 0 ; ta có : \(P=-1\in Z\)
Với x khác 0 ; ta có : \(A=\dfrac{1}{x+\dfrac{1}{x}+1}\)
Nếu x > 0 ; ta có : \(0< A\le\dfrac{1}{3}\) ( vì \(x+\dfrac{1}{x}\ge2\) ) => Ko tồn tại g/t nguyên của A (L)
Nếu x < 0 ; ta có : \(x+\dfrac{1}{x}\le-2\) \(\Rightarrow x+\dfrac{1}{x}+1\le-1\)
Suy ra : \(0>A\ge\dfrac{1}{-1}=-1\) \(\Rightarrow A=-1\)
" = " \(\Leftrightarrow x+\dfrac{1}{x}=-2\Leftrightarrow x=-1\)
x = -1 ; ta có : P = 2 \(\in Z\) (t/m)
1. 4HCl + \(MnO_2\) \(\rightarrow\) \(MnCl_2+Cl_2\) + \(2H_2O\)
2. \(Cl_2+2FeCl_2\rightarrow2FeCl_3\)
3. \(FeCl_3+3NaOH\rightarrow Fe\left(OH\right)_3\downarrow+3NaCl\)
4.\(NaCl+H_2SO_4\underrightarrow{< 250^oC}NaHSO_4+HCl\)
Ta có : \(\left(x-1\right)^2+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{41.45}=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2=\dfrac{1}{100}\) \(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{10}\\x-1=-\dfrac{1}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)
Ta có : \(\overrightarrow{BC}=\left(4;1\right)\)
Phương trình đường cao của \(\Delta ABC\) kẻ từ A : \(4\left(x-1\right)+1\left(y-4\right)=0\Leftrightarrow4x+y-8=0\)
ĐK : a;b;c khác 0
Thấy : \(a^2+b^2+c^2=\left(a+b+c\right)^2\Leftrightarrow ab+bc+ac=0\) (1)
Ta có : \(P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)
Từ (1) suy ra : \(\left(b+c\right)a=-bc\Leftrightarrow\dfrac{b+c}{a}=\dfrac{-bc}{a^2}\)
CMTT ; ta có : \(\dfrac{c+a}{b}=\dfrac{-ac}{b^2};\dfrac{a+b}{c}=\dfrac{-ab}{c^2}\)
Suy ra : \(P=-\left(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ac}{b^2}\right)=-\dfrac{a^3b^3+b^3c^3+a^3c^3}{a^2b^2c^2}\) (2)
Đặt : ab = x ; bc = y ; ac = z ; ta có : x + y + z = 0 \(\Rightarrow x^3+y^3+z^3=3xyz\) (3)
Từ (2) và (3) suy ra : \(P=-\dfrac{3xyz}{xyz}=-3\)