b) ĐKXĐ : \(-\dfrac{1}{3}\le x\le6\)
Ta có \(\sqrt{6-x}-\sqrt{3x+1}=3x^2-14x-8\)
<=> \(\left(\sqrt{6-x}-1\right)+\left(4-\sqrt{3x+1}\right)=3x^2-14x-5\)
<=> \(\dfrac{5-x}{\sqrt{6-x}+1}+\dfrac{15-3x}{4+\sqrt{3x+1}}=\left(x-5\right)\left(3x+1\right)\)
\(\Leftrightarrow\left(x-5\right)\left(3x+1+\dfrac{1}{\sqrt{6-x}+1}+\dfrac{3}{4+\sqrt{3x+1}}\right)=0\)
\(\Leftrightarrow x=5\left(\text{vì với }x\ge-\dfrac{1}{3}\text{thì }3x+1+\dfrac{1}{\sqrt{6-x}+1}+\dfrac{3}{4+\sqrt{3x+1}}>0\right)\)
Tập nghiệm phương trình \(S=\left\{5\right\}\)
c) ĐKXĐ : \(x\ge1\)
\(x^2-1=2\sqrt{2x+1}\Leftrightarrow x^2+2x+1-\left(2x+1\right)-2\sqrt{2x+1}-1=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{2x+1}+1\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+1}\right)\left(x+\sqrt{2x+1}+2\right)=0\)
\(\Leftrightarrow x=\sqrt{2x+1}\left(\text{vì }x+\sqrt{2x+1}+2>0\text{ với }x\ge1\right)\)
Khi \(x=\sqrt{2x+1}\Leftrightarrow\left\{{}\begin{matrix}x^2-2x-1=0\\x\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=2\\x\ge1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{2}+1\\x\ge1\end{matrix}\right.\Leftrightarrow x=\sqrt{2}+1\)