Có x + y + z = 6
=> (x + y + z)2 = 36
<=> x2 + y2 + z2 + 2xy + 2yz + 2zx = 36
<=> x2 + y2 + z2 + 2xy + 2yz + 2zx = 3(xy + yz + zx)
<=> x2 + y2 + z2 - xy - yz - zx = 0
<=> 2(x2 + y2 + z2 - xy - yz - zx) = 0
<=> (x - y)2 + (y - z)2 + (z - x)2 = 0
<=> x = y = z = 2 (ĐPCM)