HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
có.
prevent sb from smt/Ving
không sai nhé.
who - whose
trước danh từ ( deafness ) không dùng who.
1. The tea was too warm for her to drink
2. I find it interesting to play soccer
3. If the boy eats too many cakes, he will feel sick
4. Mrs Mi got a plumber checked the pipes
5. If he didn't speak too fast, people would understand him
1. I live in a dormitory whose residents come from many countries
2. In spite of the fact that the test was very difficult, we could do it
3. They suggested that we should leave the place at once
28 song
29 musician
30 education
31 decision
32 scientists
\(\Delta=\left(2m+1\right)^2-4.2m\\ =4m^2+4m+1-8m\\ =4m^2-4m+1\\ =\left(2m-1\right)^2\ge0\forall m\)
⇒ pt có 2 nghiệm phân biệt \(\forall m\)
Áp dụng định lý Viet ta được:
\(x_1+x_2=2m+1\left(1\right)\\ x_1x_2=2m\left(2\right)\)
Biến đổi điều kiện đề bài:
\(A=x_1^2+x_2^2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\left(3\right)\)
Thay \(\left(1\right),\left(2\right)\) vào \(\left(3\right)\) ta được
\(A=\left(2m+1\right)^2-3.2m\\ =4m^2+4m+1-6m\\ =4m^2-2m+1\)
\(=\left(2m-\dfrac{1}{4}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\\ \Rightarrow A_{min}=\dfrac{3}{4}\Leftrightarrow m=\dfrac{1}{8}\)
Điều kiện xác định: \(\left\{{}\begin{matrix}5x^2+4x\ge0\\x^2-3x-18\ge0\\x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(5x+4\right)\ge0\\\left(x-6\right)\left(x+3\right)\ge0\\x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge0\\x\le\dfrac{-4}{5}\end{matrix}\right.\\\left[{}\begin{matrix}x\ge6\\x\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x\ge6\) (*)
Khi đó phương trình \(\Leftrightarrow\) \(\sqrt{5x^2+4x}=\sqrt{x^2-3x-18}+5\sqrt{x}\)
\(\Leftrightarrow5x^2+4x=x^2+22x-18+10\sqrt{x\left(x^2-3x-18\right)}\\ \Leftrightarrow4x^2-18x+18=10\sqrt{x\left(x^2-3x-18\right)}\\ \Leftrightarrow5\sqrt{x\left(x-6\right)\left(x+3\right)}=2x^2-9x+9\\ \Leftrightarrow5\sqrt{\left(x^2-6x\right)\left(x+3\right)}=2\left(x^2-6x\right)+3\left(x+3\right)\left(1\right)\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2-6x}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\)
Khi đó pt \(\left(1\right)\) trở thành: \(2a^2+3b^2-5ab=0\\ \Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)
- TH1: \(a=b\Rightarrow x^2-6x=x+3\Leftrightarrow x^2-7x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{7+\sqrt{61}}{2}\left(tm\right)\\\dfrac{7-\sqrt{61}}{2}\left(ktm\right)\end{matrix}\right.\)
-TH2: \(2a=3b\Leftrightarrow4a^2=9b^2\\ \Leftrightarrow4\left(x^2-6x\right)=9\left(x+3\right)\\ \Leftrightarrow4x^2-33x-27=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9\left(tm\right)\\x=\dfrac{-3}{4}\left(ktm\right)\end{matrix}\right.\)
Vậy pt có 2 nghiệm \(x=\dfrac{7+\sqrt{61}}{2};x=9\)