Cho nửa đường tròn tâm O đường kính AB. C là một điểm nằm trên đoạn OA (C khác A; C khác O). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, vẽ các tiếp tuyến Ax và By với nửa đường tròn. M là điểm nằm trên nửa đường tròn (M khác A; M khác B). Đường thẳng qua M vuông góc với MC cắt các tia Ax, By lần lượt tại P và Q.
1) vẽ hình
2) chứng minh tứ giác APMC nội tiếp
3) chứng minh tam giác MAB và CPQ đồng dạng
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn.
2) Chứng minh NB2 = NK.NM
3) Chứng minh tứ giác BHIK là hình thoi