HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tam giác đều ABC. Trên các cạnh BC, CA, AB lần lượt lấy ba điểm bất kì I, J, K sao cho K khác A, B và góc IKJ bằng 60 độ. Chứng minh: \(AJ.BI\le\dfrac{AB^2}{4}\) . Dấu "=" xảy ra khi nào?
Chứng minh rằng nếu \(a+b+c=2009\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2009}\) thì một trong ba số đó bằng 2009.
Cho tam giác ABC có BC = a ; CA = b ; AB = c. Chứng minh rằng:
a) \(sin\dfrac{A}{2}\)≤\(\dfrac{a}{b+c}\)
b) \(\sin\dfrac{A}{2}.\sin\dfrac{B}{2}.\sin\dfrac{C}{2}\) ≤ \(\dfrac{1}{8}\)
Chứng minh rằng nếu \(a+b+c=2009\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2008}\) thì một trong ba số phải có một số bằng 2009.
Giải phương trình:
\(2\sqrt{x+2+\sqrt{x+1}} - \sqrt{x+1} = 4\)
Chứng minh rằng:
\(5\sqrt{2} < 1+\dfrac{1}{\sqrt{2}} + \dfrac{1}{\sqrt{3}} +...+\dfrac{1}{\sqrt{50}} < 10\sqrt{2}\)