HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
10+10=20
a) M là trung điểm của BC
=> BM=CM
Tam giác ABC cân tại A
=> AB=AC
Xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
cạnh AM chung
Do đó : \(\bigtriangleup{ABM}=\bigtriangleup{ACM}\)( c.c.c)
c, Gọi N là giao của AM va EF
Do \(\bigtriangleup{AEM}=\bigtriangleup{AFM}\)
=> AE=AF
Xét \(\bigtriangleup\) AEN và \(\bigtriangleup\) AFN có
cạnh AN chung
góc A1 = góc A2
AE=AF
Do đó\(\bigtriangleup\) AEN=\(\bigtriangleup\) AFN ( c.g.c)
=> \(\widehat{N_1} =\widehat{N_2}\)
mà \(\widehat{N_1} +\widehat{N_2}=180^0\) ( kề bù)
=> \(\widehat{N_1} =\widehat{N_2}=90^0\)
=> \(AN\bot EF\)
hay AM \(\bot\) EF
153,282364 : 2 = 76,641182
132,458 : 2 = 66,229
456,23 x 12 = 5474,76
2-1+1-1+1=(2-1)+(1-1)+1
=1+0+1
=2
7275cm2 tk m nhé
b,A= \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)
\(=(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{40})+(\dfrac{1}{41}+...+1...\) \(=(\dfrac{20}{20.21}+\dfrac{21}{21.22}+...+\dfrac{39}{39.40})+(40/...\) \(20(\dfrac{1}{20.21}+\dfrac{1}{21.22}+...\dfrac{1}{39.40})+40(\dfrac{1}{40}...\) \(20(\dfrac{1}{20}-\dfrac{1}{40})+40(\dfrac{1}{40}-\dfrac{1}{60})>\dfrac{11}{15}\) Lại có \(A<40(\dfrac{1}{20.21}+...\dfrac{1}{39.40})+60(\dfrac{1}{40.41}+...+...\) \(=40(\dfrac{1}{20}-\dfrac{1}{40})+60(\dfrac{1}{40}-\dfrac{1}{60})<\dfrac{3}{2}\)
=> \(\dfrac{11}{15}<\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}<\dfrac{3}{2}\)
14 vien bi de ot
500cm = 5m
bán kính của hình tròn là :
5 x 2 = 10 (m)
chu vi hình tròn là
10 x 3.14 = 31.4 (m)
diện tích hình tròn là
5 x 5 x 3.14 = 78.5 (m2)
Đáp số : 3.14 m
78.5 m2
k cho mik nhé
có thể giải ra cho mình ko!! Cảm ơn bạn nhiều!