HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
x.x.x^2=56
=> x^4 = 56
Mà ko co so nao mu 4 len =56
=> x thuoc rong
\(\dfrac{3x}{5}=\dfrac{2y}{3}\Leftrightarrow\dfrac{3x}{5}.\dfrac{1}{6}=\dfrac{2y}{3}.\dfrac{1}{6}\Leftrightarrow\dfrac{3x}{30}=\dfrac{2y}{18}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{9}\Leftrightarrow\dfrac{x^2}{100}=\dfrac{y^2}{81}\)Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{100}=\dfrac{y^2}{81}=\dfrac{x^2-y^2}{100-81}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=2.100=200\\y^2=2.81=162\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{200}\\y=\pm\sqrt{162}\end{matrix}\right.\)
\(2x^2+3x-1=0\)
\(\Rightarrow2x^2+3x+1=2\)
\(\Rightarrow2x^2+2x+x+1=2\)
\(\Rightarrow2x\left(x+1\right)+1\left(x+1\right)=2\)
\(\Rightarrow\left(2x+1\right)\left(x+1\right)=2\)
Xét ước
Đặt: \(\sqrt{x}=t\left(t\ge0\right)\)
Nên \(\sqrt{8+t}+\sqrt{5-t}=5\)
\(\Rightarrow\sqrt{8+t}+\sqrt{5-t}-5=0\)
\(\Rightarrow\left(\sqrt{8+t}-3\right)+\left(\sqrt{5-t}-2\right)=0\)
\(\Rightarrow\dfrac{t-1}{\sqrt{8+t}+3}+\dfrac{t-1}{\sqrt{5-t}+2}=0\Leftrightarrow\left(t-1\right)\left(\dfrac{1}{\sqrt{8+t}+3}+\dfrac{1}{\sqrt{5-t}+2}\right)=0\)
\(t=1\Leftrightarrow x=1\left(tm\right)\)
\(\left|x-1,5\right|+\left|2,5-x\right|\ge\left|x-1,5+2,5-x\right|=1>0\)
Không có giá trị \(x\) thỏa mãn
\(\dfrac{x+1}{9}+\dfrac{x+1}{8}=\dfrac{x+1}{11}+\dfrac{x+1}{12}\)
\(\Rightarrow\dfrac{x+1}{9}+\dfrac{x+1}{8}-\dfrac{x+1}{11}-\dfrac{x+1}{12}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{9}+\dfrac{1}{8}-\dfrac{1}{11}-\dfrac{1}{12}\right)=0\)
Vì \(\dfrac{1}{9}+\dfrac{1}{8}-\dfrac{1}{11}-\dfrac{1}{12}\ne0\Leftrightarrow x=-1\)
\(a=\sqrt{27}-3\sqrt{48}+2\sqrt{108}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(a=3\sqrt{3}-3\sqrt{48}+\sqrt{216}-2+\sqrt{3}\)
\(a=3\sqrt{3}-3\sqrt{48}+3\sqrt{24}-2+\sqrt{3}\)
\(a=3\left(\sqrt{3}-\sqrt{48}+\sqrt{24}+1\right)-2\)
Tính cái trong ngoặc là \(ok\).Em lười đi lấy máy tính lắm
\(b=3\sqrt{2}\left(\sqrt{50}-2\sqrt{18}+\sqrt{98}\right)\)
\(b=3\sqrt{100}-3\sqrt{72}+3\sqrt{196}\)
\(b=3\left(\sqrt{100}-\sqrt{72}+\sqrt{196}\right)\)(Tính trong ngoặc)
\(\sqrt{\left(3-\sqrt{10}\right)^2}=3-\sqrt{10}\)
\(\sqrt{\left(4-\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}=4-\sqrt{5}+1-\sqrt{5}=5-2\sqrt{5}\) \(\sqrt{\left(2-\sqrt{7}\right)^2}=2-\sqrt{7}\)
\(\sqrt{\left(4-\sqrt{13}\right)^2}+\sqrt{\left(2-\sqrt{13}\right)^2}=4-\sqrt{13}+2-\sqrt{13}=6-2\sqrt{13}\)
Đặt:
\(\dfrac{a}{10}=\dfrac{b}{8}=\dfrac{c}{6}=t\Leftrightarrow\left\{{}\begin{matrix}a=10t\\b=8t\\c=6t\end{matrix}\right.\)
\(M=\dfrac{a+2b-3c}{a-2b+3c}=\dfrac{10t+16t-18t}{10t-16t+18t}=\dfrac{8t}{12t}=\dfrac{8}{12}=\dfrac{2}{3}\)
\(A=\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\)
\(A^2=\left(\sqrt{5+\sqrt{21}}^2+2\sqrt{\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)}+\sqrt{5-\sqrt{21}}^2\right)\)
\(A^2=5+\sqrt{21}+\sqrt{4\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)}+5-\sqrt{21}\)
\(A^2=10+\sqrt{4.\left(25-21\right)}\)
\(A^2=10+\sqrt{4.4}=10+4=14\)
\(A=\sqrt{14}\)
Tương tự