\(\sqrt{9x+8}+\sqrt{4x-8}=20\)
\(\Rightarrow\left(\sqrt{9x+8}+\sqrt{4x-8}\right)^2=400\)
\(\Rightarrow9x+8+2\sqrt{\left(9x+8\right)\left(4x-8\right)}+4x-8=400\)
\(\Rightarrow13x+\sqrt{4\left(9x+8\right)\left(4x-8\right)}=400\)
\(\Rightarrow\sqrt{4\left(9x+8\right)\left(4x-8\right)}=400-13x\)
\(\Rightarrow4\left(9x+8\right)\left(4x-8\right)=\left(400-13x\right)^2\)
\(\Rightarrow\left(36x+32\right)\left(4x-8\right)=160000-10400x+169x^2\)
\(\Rightarrow36x\left(4x-8\right)+32\left(4x-8\right)=160000-10400x+169x^2\)
\(\Rightarrow144x^2-288x+128x-256=160000-10400x+169x^2\)
\(\Rightarrow144x^2-160x-256=160000-10400x+169x^2\)
\(\Rightarrow160000-10400x+169x^2-144x^2+160x+256=0\)
\(\Rightarrow\left(160000+256\right)+\left(169x^2-144x^2\right)+\left(160x-10400x\right)=0\)\(\Rightarrow160256+25x^2-10240x=0\)
\(\Rightarrow1048576-888320+25x^2-10240x=0\)
\(\Rightarrow1048576+25x^2-10240x=888320\)
\(\Rightarrow\left(1024-5x\right)^2=888320\)
\(\Rightarrow\left[{}\begin{matrix}1024-5x=\sqrt{888320}\\1024-5x=-\sqrt{888320}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1024-\sqrt{888320}}{5}\\x=\dfrac{1024+\sqrt{888320}}{5}\end{matrix}\right.\)