HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
ai tick mik mik tick lại cko
\(x^2+3x+2=0\)
\(\Rightarrow x^2+2x+x+2=0\)
\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
\(x^3-3x^2-x+3=0\)
\(\Rightarrow x^2\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm1\\x=3\end{matrix}\right.\)
\(x^3+4x^2+5x^2=0\)
\(\Rightarrow x^3+9x^2=0\)
\(\Rightarrow x^2\left(x+9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x+9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
@Akai Haruma em không hiểu tại sao bài kia chị lại tick cho bạn đó ạ,đề nói chứng minh,mak bạn đó đã làm hết đâu:
\(VT=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{3n-1}+\dfrac{1}{3n+2}\right)\)
\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(VT=\dfrac{1}{6}-\dfrac{1}{9n+6}\)
\(VT=\dfrac{9n+6}{54n+36}-\dfrac{6}{54n+36}\)
\(VT=\dfrac{9n+6-6}{54n+36}=\dfrac{9n}{54n+36}=\dfrac{9n}{9\left(6n+4\right)}=\dfrac{n}{6n+4}=VP\left(đpcm\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Khi đó:
\(\left\{{}\begin{matrix}\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\\\dfrac{1}{x+y+z}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\\2x+2y+2z=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y+2z+2=4x\\2x+2z+4=4y\\2x+2y-6=4z\\2x+2y+2z=1\end{matrix}\right.\)
\(\circledast\) Xét \(2x+2y+2z=1\Leftrightarrow2y+2z=1-2x\Leftrightarrow1-2x+2=4x\)
\(\Leftrightarrow3-2x=4x\Leftrightarrow6x=3\Leftrightarrow x=\dfrac{1}{2}\)
\(\circledast\)Xét \(2x+2y+2z=1\Leftrightarrow2x+2z=1-2y\Leftrightarrow1-2y+4=4y\)
\(\Leftrightarrow5-2y=4y\Leftrightarrow6y=5\Leftrightarrow y=\dfrac{5}{6}\)
\(\circledast\)Xét \(2x+2y+2z=1\Leftrightarrow2x+2y=1-2z\Leftrightarrow1-2z-6=4z\)
\(\Leftrightarrow-5-2z=4z\Leftrightarrow-5=6z\Leftrightarrow z=-\dfrac{5}{6}\)
Lời giải:
Ta có:1 điều luôn đúng:
\(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2-2ab+b^2\ge0\\b^2-2bc+c^2\ge0\\c^2-2ac+a^2\ge0\end{matrix}\right.\)
Tương đương với:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\)
Cộng theo 3 vế:
\(a^2+b^2+b^2+c^2+c^2+a^2\ge2ab+2bc+2ac\)
Suy ra \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\left(đpcm\right)\)
\(A=2004+\sqrt{2003-x}\)
a)Để \(A\) có nghĩa thì \(2003-x\ge0\Leftrightarrow x\le2003\)
b) Ta có:
\(A=2004+\sqrt{2003-x}=2005\)
\(\sqrt{2003-x}=1\)
Suy ra :\(\left|2003-x\right|=1\Rightarrow\left[{}\begin{matrix}2003-x=1\\2003-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2002\\x=2004\end{matrix}\right.\)
c) Ta có:
Để \(A\) nhỏ nhất thì \(\sqrt{2003-x}\) cũng phải nhỏ nhất
\(\sqrt{2003-x}\ge0\Leftrightarrow2004+\sqrt{2003-x}\ge2004\)
Dấu "=" xảy ra khi: \(x=2003\)