Pt tương đương
\(\left\{{}\begin{matrix}4sin^2x+\dfrac{sinx}{cosx}+\sqrt{2}\left(1+\dfrac{sinx}{cosx}\right).sin3x=1\\cosx\ne0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}4sin^2x.cosx+sinx+\sqrt{2}\left(sinx+cosx\right).sin3x=cosx\\cosx\ne0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2sin2x.sinx+sinx+\sqrt{2}\left(sinx+cosx\right).sin3x=cosx\\cosx\ne0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}sinx-cos3x+\sqrt{2}\left(sinx+cosx\right).sin3x=0\\cosx\ne0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}sinx-sin\left(3x+\dfrac{\pi}{2}\right)-2sin\left(x+\dfrac{\pi}{4}\right).sin3x=0\\cosx\ne0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2cos\left(2x+\dfrac{\pi}{4}\right).sin\left(-x-\dfrac{\pi}{4}\right)-2sin\left(x+\dfrac{\pi}{4}\right).sin3x=0\\cosx\ne0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2cos\left(2x+\dfrac{\pi}{4}\right).sin\left(x+\dfrac{\pi}{4}\right)+2sin\left(x+\dfrac{\pi}{4}\right).sin3x=0\\cosx\ne0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)\left[cos\left(2x+\dfrac{\pi}{4}\right)+sin3x\right]=0\\cosx\ne0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\sin3x=sin\left(2x+\dfrac{3\pi}{4}\right)\end{matrix}\right.\\x\ne\dfrac{\pi}{2}+k\pi,k\in Z\end{matrix}\right.\)
Giải nốt nhé, toàn phương trình cơ bản rồi