HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
bình phương cả 2 vế ta được
\(A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2x^2+2y^2+2z^2\)
\(A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\) (vì x^2 +y^2 +z^2 =1)
Áp dụng BĐT cô si cho 2 số
\(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\left(1\right)\)
\(\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\left(2\right)\)
\(\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\left(3\right)\)
(1)+(2)+(3)
=> \(2\left(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\right)\ge2\left(x^2+y^2+z^2\right)\)
<=> \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge1\)
Cộng 2 vào cả 2 vế ta đc
\(A^2\ge3\)
<=> \(\ge\sqrt{3}\)
Vậy Min A= \(\sqrt{3}\) khi x=y=z =\(\dfrac{1}{\sqrt{3}}\)
tin vào bản thân mk đi
đặt AH là đg cao
theo đề bài ta có \(\dfrac{AB}{AC}=\dfrac{3}{7}\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{7}=k\)
=> AB=3k ; AC=7k
+ Xét tam giác ABC vuông ở A có AH \(\perp BC\)
=> AH2=AB.AC (hệ thức trong tam giác vuông )
<=> 422 =3k. 7k
<=>1764=21k2
<=> k2=84
<=> k \(\approx9,17\)
=> AB= 27,51
=> AC=64,19
bn tự lm nốt nha