Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6

Học tại trường Chưa có thông tin
Đến từ Thanh Hóa , Chưa có thông tin
Số lượng câu hỏi 129
Số lượng câu trả lời 3047
Điểm GP 309
Điểm SP 1860

Người theo dõi (285)

Đang theo dõi (59)


Câu trả lời:

có sai đề k bạn nếu sai mk xin sửa

đkxđ \(x\ne1;x\ge0\)

a,\(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)

\(=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{x-1}\)

\(=\frac{2x+3-3\sqrt{x}-1}{x-1}=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b, khi x = \(4+2\sqrt{3}\)

\(A=\frac{2\left(3+2\sqrt{3}\right)+1}{4+2\sqrt{3}-2}=\frac{9+4\sqrt{5}}{3+2\sqrt{3}}\)

c, để A = 1/2

\(\frac{2\sqrt{x}+1}{\sqrt{x}-1}=\frac{1}{2}\Leftrightarrow4\sqrt{x}+2=\sqrt{x}-1\Leftrightarrow3\sqrt{x}=3\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(ktmđk\right)\)

d, để A<1\(\Leftrightarrow\frac{2\sqrt{x}+1}{\sqrt{x}-1}< 1\left(1\right)\)

th1 với \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)

Ta có (1)\(\Leftrightarrow2\sqrt{x}+1< \sqrt{x}-1\Leftrightarrow\sqrt{x}< -2\left(loại\right)\)

th2 \(\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow0\le x< 1\)

ta có (1) \(\Leftrightarrow2\sqrt{x}+1>\sqrt{x}-1\Leftrightarrow\sqrt{x}>-2\left(luônđúng\right)\)

\(\Rightarrow0\le x< 1\)

e, \(A=\frac{2\sqrt{x}+1}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=2+\frac{3}{\sqrt{x}-1}\)

để A là số nguyen thì \(\frac{3}{\sqrt{x}-1}\)cũng là số nguyên

\(\left[{}\begin{matrix}\sqrt{x}-1=1\\\sqrt{x}-1=-1\\\sqrt{x}-1=3\\\sqrt{x}-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=0\\\sqrt{x}=4\\\sqrt{x}=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tmđk\right)\\x=0\left(tmđk\right)\\x=16\left(tmđk\right)\end{matrix}\right.\)