HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
b) \(x,y\ge1\Rightarrow xy\ge1\)
BĐT đã cho tương đương với:
\(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\dfrac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow+\dfrac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)
BĐT cuối luôn đúng nên ta có đpcm
Đẳng thức xảy ra khi x=y hoặc xy=1
Giả sử đpcm đúng, ta có
\(x^2+y^2+1\ge xy+x+y\)
\(x^2+x^2+y^2+y^2+2\ge2xy+2x+2y\)
\(\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)
\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\)(Luôn đúng)
Vậy ta có đpcm
Đẳng thức xảy ra khi và chỉ khi x=y=1
7) Áp dụng BĐT Cauchy-Schwarz, ta có
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c+3}\ge\dfrac{9}{6}=\dfrac{3}{2}\)
\(Min_B=\dfrac{3}{2}\) khi a=b=c
5) Áp dụng BĐT Bunyakovsky, ta có:
\(\left(4x+5y\right)^2\le\left(4^2+5^2\right)\left(x^2+y^2\right)\)
\(x^2+y^2\le\dfrac{\left(4x+5y\right)^2}{4^2+5^2}=\dfrac{625}{41}\)
Đẳng thức xảy ra khi
2) \(\left(\sqrt{2a}-\sqrt{2b}\right)^2\ge0\)
\(2a-4\sqrt{ab}+2b\ge0\)
\(4a+4b\ge2a+2b+4\sqrt{ab}\)
\(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
Dấu ''='' xảy ra khi a=b
1) \(\left(a-b\right)^2\ge0\)
\(a^2-2ab+b^2\ge0\)
\(a^2+b^2+2ab\ge4ab\)
\(\left(a+b\right)^2\ge4ab\)
\(\dfrac{\left(a+b\right)^2}{4}\ge ab\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
Tự c/m BĐT phụ sau: \(x^5+y^5\ge x^2y^2\left(x+y\right)\)
Áp dụng vào bài :V
\(\dfrac{ab}{a^5+b^5+ab}\ge\dfrac{ab}{a^2b^2\left(a+b\right)+ab}=\dfrac{ab}{ab\left[ab\left(a+b\right)+1\right]}=\dfrac{1}{ab\left(a+b\right)+1}=\dfrac{c}{abc\left(a+b\right)+c}=\dfrac{c}{a+b+c}\)
Tương tự rồi cộng lại được đpcm
\(\overline{xy}=\left(x-1\right)^2+\left(y-1\right)^2\)
\(4\overline{xy}=4\left[\left(x-1\right)^2+\left(y-1\right)^2\right]\)
\(4\left(10x+y\right)=4\left(x^2-2x+1\right)+4\left(y^2-2y+1\right)\)
\(40x+4y-4x^2+8x-4-4y^2+8y-4=0\)
\(4x^2-48x+144+4y^2-12y+9=145\)
\(\left(2x-12\right)^2+\left(2y-3\right)^2=12^2+1^2=8^2+9^2\)
Xét các TH:
\(\left\{{}\begin{matrix}\left|2x-12\right|=12\\\left|2y-3\right|=1\end{matrix}\right.\)(giải thì hệ này không thỏa mãn điều kiện)
\(\left\{{}\begin{matrix}\left|2x-12\right|=1\\\left|2y-3\right|=12\end{matrix}\right.\)(Hệ này cũng không thỏa mãn điều kiện)
\(\left\{{}\begin{matrix}\left|2x-12\right|=8\\\left|2y-3\right|=9\end{matrix}\right.\)( Nhận nghiệm x=2;y=6)
\(\left\{{}\begin{matrix}\left|2x-12\right|=9\\\left|2y-3\right|=8\end{matrix}\right.\)(Hệ này không thỏa mãn điều kiện)
Vậy\(\overline{xy}=26\)
Theo mình nghĩ nên là -24
Đặt: \(\left(x+2\right)\left(x+5\right)=x^2+7x+10=t\)
\(\left(x+3\right)\left(x+4\right)=x^2+7x+12=t+2\)
\(t\left(t+2\right)-26\)
\(=t^2+2t-26\)
\(=t^2+2t+1-27\)
\(=\left(t+1\right)^2-\sqrt{27}^2=\left(t+1-\sqrt{27}\right)\left(t+1+\sqrt{27}\right)\)
\(=\left(x^2+7x+10+1-\sqrt{27}\right)\left(x^2+7x+10+1+\sqrt{27}\right)\)
Vì \(a,b,c,x,y,z\ne0\) nên :
Đặt \(\dfrac{a}{x}=m;\dfrac{b}{y}=n;\dfrac{c}{z}=p\Rightarrow\dfrac{x}{a}=\dfrac{1}{m};\dfrac{y}{b}=\dfrac{1}{n};\dfrac{z}{c}=\dfrac{1}{p}\)
Vậy ta có: \(m+n+p=0\)
\(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}=1\Leftrightarrow\left(\dfrac{1}{m}+\dfrac{1}{m}+\dfrac{1}{p}\right)^2=1\)
\(\Leftrightarrow\dfrac{1}{m^2}+\dfrac{1}{n^2}+\dfrac{1}{p^2}+2\left(\dfrac{m+n+p}{mnp}\right)=1\)
\(\Leftrightarrow\dfrac{1}{m^2}+\dfrac{1}{n^2}+\dfrac{1}{p^2}=1\)
Vậy: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\Rightarrow M=1\)
3) Từ giả thiết, ta suy ra
\(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
Bạn chịu khó tự biến đổi, ta được
\(\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
\(\left\{{}\begin{matrix}ay-bx=0\Leftrightarrow ay=bx\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\\az-cx=0\Leftrightarrow az=cx\Leftrightarrow\dfrac{a}{x}=\dfrac{c}{z}\\bz-cy=0\Leftrightarrow bz=cy\Leftrightarrow\dfrac{b}{y}=\dfrac{c}{z}\end{matrix}\right.\)
Vậy ta suy ra đpcm
P/S: Đây là BĐT Bunyakovsky với 3 số