Học tại trường Chưa có thông tin
Đến từ Hà Nội , Chưa có thông tin
Số lượng câu hỏi 6
Số lượng câu trả lời 278
Điểm GP 96
Điểm SP 261

Người theo dõi (62)

Cao ngocduy Cao
Lê Diễm Quỳnh
Nhật Anh
Kay Nguyễn

Đang theo dõi (0)


Câu trả lời:

21, \(x^2+4xy+3y^2\)

\(=x^2+4xy+4y^2-y^2\)

\(=\left(x+2y\right)^2-y^2\)

\(=\left(x+2y-y\right)\left(x+2y+y\right)\)

\(=\left(x+y\right)\left(x+3y\right)\)

22, \(2x^2-5xy+2y^2\)

\(=2x^2-xy-4xy+2y^2\)

\(=x\left(2x-y\right)-2y\left(2x-y\right)\)

\(=\left(x-2y\right)\left(2x-y\right)\)

23, \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\) (giống câu 11, chỉ cần thêm bớt xyz)

24, \(2x^2-7xy+3y^2+5xz-5yz+2z^2\)

\(=2x^2-xy+xz-6xy+3y^2-2yz+4xz-3yz+2z^2\)

\(=2x\left(x-3y+2z\right)-y\left(x-3y+2z\right)+z\left(x-3y+2z\right)\)

\(=\left(2x-y+z\right)\left(x-3y+2z\right)\)

25, \(x^2-7x+10\)

\(=x^2-2x-5x+10\)

\(=x\left(x-2\right)-5\left(x-2\right)\)

\(=\left(x-5\right)\left(x-2\right)\)

26, \(4x^2-3x-1\)

\(=4x^2-4x+x-1\)

\(=4x\left(x-1\right)+x-1\)

\(=\left(4x+1\right)\left(x-1\right)\)

27, \(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

28, \(bc\left(b+c\right)+ac\left(c-a\right)-ab\left(a+b\right)\)(giải tương tự câu 11, thêm bớt abc)

29, \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2\right)\)

\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(y+z\right)\)

\(=\left(x+y+z\right)\left(xy+xz\right)+yz\left(y+z\right)\)

\(=x\left(y+z\right)\left(x+y+z\right)+yz\left(y+z\right)\)

\(=\left(y+z\right)\left[x\left(x+y+z\right)+yz\right]\)

\(=\left(y+z\right)\left(x^2+xy+xz+yz\right)\)

\(=\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

Còn 3 câu cuối tính sau, mệt

Câu trả lời:

Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha

11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)

\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)

\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

12, \(x^3-7x-6\)

\(=x^3-3x^2+3x^2-9x+2x-6\)

\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+2\right)\)

\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)

13, \(x^4+4\)

\(=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-4x^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

14, \(a^4+64\)

\(=a^4+16a^2+64-16a^2\)

\(=\left(a^2+8\right)^2-16a^2\)

\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)

15, \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)

16, \(x^5+x-1\)

\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)

\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)

17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)

19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)

Đặt \(x^2+8x+7=a\) ta có:

(*) \(\Leftrightarrow a\left(a+8\right)+15\)

\(\Leftrightarrow a^2+8a+15\)

\(\Leftrightarrow a^2+3a+5a+15\)

\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)

\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)

Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)

Đặt \(x^2+3x+1=a\) ta có:

(*) \(\Leftrightarrow a\left(a+1\right)-6\)

\(\Leftrightarrow a^2+a-6\)

\(\Leftrightarrow a^2+3a-2a-6\)

\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)

\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)

Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)