Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(D^2\le3\left[a+\dfrac{\left(b-c\right)^2}{12}+\dfrac{\left(\sqrt{b}+\sqrt{c}\right)^2}{4}+\dfrac{\left(\sqrt{b}+\sqrt{c}\right)^2}{4}\right]\)
\(\Rightarrow D^2\le3\left[a+\dfrac{\left(b-c\right)^2}{12}+\dfrac{6\left(\sqrt{b}+\sqrt{c}\right)^2}{12}\right]\)
\(\Rightarrow D^2\le3\left[a+\dfrac{\left(b-c\right)^2+6\left(\sqrt{b}+\sqrt{c}\right)^2}{12}\right]\)
Ta sẽ C/m \(\dfrac{\left(b-c\right)^2+6\left(\sqrt{b}+\sqrt{c}\right)^2}{12}\le b+c\) (1)
Thật vậy \(\dfrac{\left(b-c\right)^2+6\left(\sqrt{b}+\sqrt{c}\right)^2}{12}\le b+c\)
\(\Leftrightarrow\left(b-c\right)^2+6\left(\sqrt{b}+\sqrt{c}\right)^2\le12\left(b+c\right)\)
\(\Leftrightarrow\left(b-c\right)^2+6b+6c+12\sqrt{bc}\le12\left(b+c\right)\)
\(\Leftrightarrow\left(b-c\right)^2\le6\left(b+c\right)-12\sqrt{bc}\)
\(\Leftrightarrow\left(\sqrt{b}+\sqrt{c}\right)^2\left(\sqrt{b}-\sqrt{c}\right)^2\le6\left(\sqrt{b}-\sqrt{c}\right)^2\)
\(\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\left(6-\left(\sqrt{b}+\sqrt{c}\right)^2\right)\ge0\) (2)
Ta có: \(\left(\sqrt{b}+\sqrt{c}\right)^2\le2\left(b+c\right)< 2\left(a+b+c\right)=6\)
Do đó (2) đúng nên (1) đúng
\(\Rightarrow D^2\le3\left(a+b+c\right)=9\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)
Vậy max \(D=3\)