a) Xét \(\Delta AEB\) và \(\Delta KEB\) có:
\(\widehat{ABD}=\widehat{KBE}\) (BD là tia phân giác \(\widehat{B}\) )
BE ( chung )
\(\widehat{AEB}=\widehat{KEB}\left(=90^0\right)\)
Do đó: \(\Delta AEB=\Delta KEB
\left(g-c-g\right)\)
=> BA = BK (hai cạnh tương ứng)
=> \(\Delta ABK\) cân tại B
b) Xét \(\Delta BAD\) và \(\Delta BKD\) có:
BA = BK (cmt)
\(\widehat{ABD}=\widehat{KBD}\) (BD là tia phân giác \(\widehat{B}\))
BD (chung)
Do đó: \(\Delta BAD=\Delta BKD\left(c-g-c\right)\)
=> \(\widehat{BKD}=\widehat{BAD}\) (hai góc tương ứng) \(=90^0\)
=> DK \(\perp\) BC
c) Ta có: \(\widehat{BAE}+\widehat{EAD}=\widehat{BAD}\)
=> \(\widehat{EAD}=\widehat{BAD}-\widehat{BAE}\)
\(\widehat{BKE}+\widehat{KED}=\widehat{BKD}\)
=> \(\widehat{KED}=\widehat{BKD}-\widehat{BKE}\)
mà \(\widehat{BAE}=\widehat{BKE}\) và \(\widehat{BAD}=\widehat{BKD}\)
=> \(\widehat{EAD}=\widehat{KED}\) \(\left(1\right)\)
Vì \(\widehat{BHA}=\widehat{CKD}=90^0\)
=> AH // DK ( đồng vị )
=> \(\widehat{HAK}=\widehat{AKD}\) ( so le trong )
hay \(\widehat{HAK}=\widehat{EKD}\) \(\left(2\right)\)
\(\left(1\right);\left(2\right)\)=> \(\widehat{HAK}=\widehat{EAD}\)
=> AK là tia phân giác \(\widehat{HAC}\)
d) Xét \(\Delta BAI\) và \(\Delta BKI\) có:
\(\widehat{ABI}=\widehat{BKI}\) (BD là tia phân giác \(\widehat{B}\) )
BI (chung)
BA = BK (cmt)
Do đó: \(\Delta BAI=\Delta BKI\left(c-g-c\right)\)
=> \(\widehat{BAI}=\widehat{BKI}\) (hai góc tương ứng)
mà \(\widehat{BAE}=\widehat{BKE}\)
Do đó: \(\widehat{IAE}=\widehat{IKE}\)
mà \(\widehat{IAE}=\widehat{KAD}\)
=> \(\widehat{IKE}=\widehat{KAD}\)
=> IK // AC (sole trong)