HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Số gạo tẻ mẹ mua gấp số lần gạo nếp :45 : 9 = 5 ( lần )Đáp số : 5 lần
Bài 2 thiếu đề sửa.
\(A=3+3^2+3^3+3^4+3^5+...+3^{100}\)
\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(\Rightarrow A=\left(4.3\right)+\left(4.3^3\right)+...+\left(4.3^{99}\right)\)
\(\Rightarrow A=4.\left(3+3^3+...+3^{99}\right)\)
Vì tích có chứa thừa số 4 nên: \(A⋮4\)
Vậy A chia hết cho 4
Chứng minh chia hết cho 10 cũng tương tự nha bạn.
Bài 1:
\(A=\dfrac{2}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{89.93}\)
\(A=\dfrac{2}{1.5}+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{89}-\dfrac{1}{93}\right)\)
\(A=\dfrac{2}{5}+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{93}\right)\)
\(A=\dfrac{2}{5}+\dfrac{1}{4}.\dfrac{88}{465}\)
\(A=\dfrac{2}{5}+\dfrac{22}{465}=\dfrac{208}{465}\)
b) \(B=2+2^3+2^5+2^7+...+2^{99}\)
\(\Rightarrow2^2B=2^2.\left(1+2^3+2^5+2^7+...+2^{99}\right)\)
\(2^2B=2^3+2^5+2^7+2^9+...+2^{101}\)
\(2^2B-B=\left(2^3+2^5+2^7+2^9+...+2^{101}\right)-\left(2+2^3+2^5+2^7+...+2^{99}\right)\) \(3B=2^{101}-2\)
\(\Rightarrow B=\dfrac{2^{101}-2}{3}\)
Vậy \(B=\dfrac{2^{101}-1}{3}\)
~ Học tốt ~
a) \(A=2+2^2+2^3+2^4+...+2^{99}\)
\(\Rightarrow2A=2.\left(2+2^2+2^3+2^4+...+2^{99}\right)\)
\(2A=2^2+2^3+2^4+2^5+...+2^{100}\)
\(2A-A=\left(2^2+2^3+2^4+2^5+...+2^{100}\right)-\left(2+2^2+2^3+2^4+...2^{99}\right)\) \(\Rightarrow A=2^{100}-2\)
Vậy \(A=2^{100}-2\)
Giải:7)
\(7^2+24^2=49+576=625\)
\(9^2+40^2=81+1600=1681\)
8)
C1 :\(11^3:11^2=1331:121=11\)
C2 :\(11^3:11^2=11^{3-2}=11\)
C1 :\(16^2:4^2=256:16=16\)
C2 :\(16^2:4^2=\left(4^2\right)^2:4^2=4^4:4^2=16\)
9)
a) \(4^n=64\Rightarrow4^n=4^3\)
\(\Rightarrow n=3\)
b) \(2^n.16=128\Rightarrow2^n=8\)
\(\Rightarrow2^n=2^3\Rightarrow n=3\)
c) \(3^n:9=27\Rightarrow3^n=243\)
\(\Rightarrow3^n=3^5\Rightarrow n=5\)
\(\left|x+123\right|+\left|\left|y+1\right|-5\right|=0\)
Ta có: \(\left|x+123\right|\ge0\) với mọi x
\(\left|\left|y+1\right|-5\right|\ge0\) với mọi y
Nên \(\left|x+123\right|+\left|\left|y+1\right|-5\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+123=0\\\left|y+1\right|-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-123\\\left|y+1\right|=5\end{matrix}\right.\)
\(\left|y+1\right|=5\Rightarrow y+1=\pm5\)
+ \(y+1=-5\Rightarrow y=-6\)
+ \(y+1=5\Rightarrow y=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-123\\\left[{}\begin{matrix}y=-6\\y=4\end{matrix}\right.\end{matrix}\right.\)
- 69 + 53 + 46 - 94 + (- 14) + 78
= - 69 + 99 - 100 + 78
= - 69 - 1 + 78 = -70 + 78
= 2
Bài 2:
a) \(\left|x+1\right|=0\)
\(\Rightarrow\) x + 1 = 0
\(\Rightarrow\) x = - 1
b) \(25-\left|x\right|=10\)
\(\Rightarrow\left|x\right|=15\)
\(\Rightarrow x=\pm15\)
c)\(\left|x-2\right|+7=12\)
\(\Rightarrow\left|x-2\right|=5\)
\(\Rightarrow x-2=\pm5\)
+ \(x-2=-5\Rightarrow x=-3\)
+ \(x-2=5\Rightarrow x=7\)
Vậy: \(\left\{{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
~ học tốt ~
Gọi phân số cần tìm là: \(\dfrac{a}{b}\)
Theo đề, ta có:
\(\dfrac{3a}{b}=\dfrac{a+b}{b+b}=\dfrac{a+b}{b^2}\)
\(\Rightarrow3a.2b=ab+b^2\)
\(\Rightarrow6ab=ab+b^2\)
\(\Rightarrow6=\left(ab+b^2\right):ab\)
\(\Rightarrow6=1+\dfrac{b}{a}\Rightarrow5=\dfrac{b}{a}\)
\(\Rightarrow...=\dfrac{2}{10}=\dfrac{1}{5}=\dfrac{a}{b}\)
Mà \(\dfrac{a}{b}\) tối giản nên \(\dfrac{a}{b}=\dfrac{1}{5}\)
Vậy phân số cần tìm là \(\dfrac{1}{5}\)