a) \(\dfrac{x+1}{x-1}+\dfrac{1}{x+1}=0\)
\(\left\{{}\begin{matrix}x-1\ne0\\\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ne1\\\\x\ne-1\end{matrix}\right.\)
\(\Rightarrow\) ĐKXĐ: x\(\ne\)1 ; x\(\ne\)-1
Phương trình \(\Leftrightarrow\)\(\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\) x2 + 2x + 1 +x - 1 = 0
\(\Leftrightarrow\) x2 +3x = 0
\(\Leftrightarrow\) x(x+3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)(thỏa mãn)
Vậy tập nghiệm của phương trình S=\(\left\{-3;0\right\}\)
b) \(\dfrac{x}{x-3}+\dfrac{6x}{9-x^2}=0\)
\(\left\{{}\begin{matrix}x-3\ne0\\\\x+3\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ne3\\\\x\ne-3\end{matrix}\right.\)
\(\Rightarrow\) ĐKXĐ: x\(\ne\)3 ; x\(\ne\)-3
Phương trình \(\Leftrightarrow\)\(\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\)x2 + 3x -6x =0
\(\Leftrightarrow\)x(x + 3 - 6) = 0
\(\Leftrightarrow\)x(x - 3 ) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=3\left(lo\text{ại}\right)\end{matrix}\right.\)
Vậy tập nghiệm của phương trình S =\(\left\{0\right\}\)