HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Khoảng cách d từ gốc tọa độ đến điểm (x;y) được tính theo công thức d=√x2+y2d=x2+y2
Ta có OA=√2<2⇒AOA=2<2⇒A nằm trong đường tròn (O;2).
OB=√5>2⇒BOB=5>2⇒B nằm ngoài đường tròn (O;2).
OC=2⇒COC=2⇒C nằm trên đường tròn (O;2).
Cách 1:
Trên đường tròn lấy ba điểm A, B, C
Vẽ hai dây AB, AC
Dựng các đường trung trực của AB, AC chúng cắt nhau tại O, đó là tâm của đường tròn
Cách 2:
Gấp tấm bìa sao cho hai phần của hình tròn trùng nhau, nếp gấp là một đường kính
Lại gấp như trên theo nếp gấp khác, ta được một đường kính thứ hai. Giao điểm của hai đường kính này là tâm của đường tròn
a) Hình 58 vừa có tâm đối xứng vừa có trục đối xứng
b) Hình 59 có một trục đối xứng.
cái ông này, tui lm đến đó thui, ko rảnh nha
Quy tắc nhân: Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải:
- Giữ nguyên chiều bất phương trình nếu số đó dương;
- Đổi chiều bất phương trình nếu số đó âm.
Quy tắc này dựa trên tính chất liên hệ giữa thứ tự và phép nhân trên tập số (sgk trang 36 Toán 8 Tập 2):
- Khi nhân cả hai vế của bất đẳng thức với cùng một số dương ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
- Khi nhân cả hai vế của bất đẳng thức với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.
Quy tắc chuyển vế: Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta phải đổi dấu của hạng tử đó.
Quy tắc này dựa trên tính chất liên hệ giữa thứ tự và phép cộng trên tập số (sgk trang 36 Toán 8 Tập 2):
Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
Ví dụ: 2x + 4 < 0
⇔ 2x < -4 ⇔ x < -2
Ví dụ -3 là một nghiệm của bất phương trình này.
Bất phương trình bậc nhất một ẩn có dạng: ax + b < 0 (hoặc ax + b > 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a, b là hai số đã cho, a ≠ 0.
Ví dụ: 2x + 4 < 0 (hoặc 2x + 4 > 0, 2x + 4 ≤ 0, 2x + 4 ≥ 0)
- Bất đẳng thức chứa dấu <: -3 < (-2) + 1
- Bất đẳng thức chứa dấu ≤: 5 + (-2) ≤ -3
- Bất đẳng thức chứa dấu >: 4 > (-1) + 3
- Bất đẳng thức chứa dấu ≥: 3 + 2 ≥ 4