Hình bạn tự vẽ nha
Chứng minh
a, Xét \(\Delta AHC\) và \(\Delta DHC\) có :
HC chung
\(\widehat{AHC}=\widehat{DHC}\) (=1v)
AH = DH (gt)
\(\Rightarrow\Delta AHC=\Delta DHC\) (c.g.c)
b, Áp dụng định lí Py-ta-go vào \(\Delta ABC\) vuông tại A , ta có :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=10^2-6^2=100-36=64\)
\(\Rightarrow AC=8\)cm
c,Gọi giao điểm của AC và DE là I
Xét \(\Delta AHB\) và \(\Delta DHE\) có :
AH = HD (gt)
\(\widehat{AHB}=\widehat{DHE}\) ( đối đỉnh )
HB = HE (gt)
\(\Rightarrow\Delta AHB=\Delta DHE\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAH}=\widehat{EDH}\) ( ở vị trí đồng vị )
\(\Rightarrow\) AB // DE
\(\Rightarrow\widehat{BAI}+\widehat{AID}=180^o\) hay \(90^o+\widehat{AID}=180^O\)
\(\Rightarrow\widehat{AID}=90^O\)
\(\Rightarrow DE\perp AC\)
d, Xét \(\Delta AHB\) và \(\Delta AHE\) có :
AH chung
\(\widehat{AHB}=\widehat{AHE}\) (=1v)
BH = HE (gt)
\(\Rightarrow\Delta AHB=\Delta AHE\) ( c.g.c )
\(\Rightarrow AB=AE\) (hai cạnh tương ứng ) (1)
\(\Delta AHC=\Delta DHC\) (câu a )
\(\Rightarrow AC=CD\) ( hai cạnh tương ứng ) (2)
Từ (1) và (2) \(\Rightarrow AB+AC=AE+CD\)
mà AB + AC > BC ( bất đẳng thức trong tam giác )
\(\Rightarrow AE+CD>BC\)