Cách 2 : A = \(6x^4+7x^3-36x^2-7x+6=0\)
= \(6x^2\left(x^2+\dfrac{7}{6}x-6-\dfrac{7}{6x}+\dfrac{1}{x^2}\right)=0\)
= \(6x^2\left(\left(x^2+\dfrac{1}{x^2}-2\right)+\dfrac{7}{6}\left(x-\dfrac{1}{x}\right)-4\right)=0\)
= \(6x^2\left(\left(x-\dfrac{1}{x}\right)^2+\dfrac{7}{6}\left(x-\dfrac{1}{x}\right)-4\right)=0\)
Đặt \(A'=\left(x-\dfrac{1}{x}\right)^2+\dfrac{7}{6}\left(x-\dfrac{1}{x}\right)-4\)
và \(t=x-\dfrac{1}{x}\Rightarrow A'=t^2+\dfrac{7}{6}t-4\)
\(=t^2+2t.\dfrac{7}{12}+\left(\dfrac{7}{12}\right)^2-\left(\dfrac{7}{12}\right)^2-4\)
\(=\left(t+\dfrac{7}{12}\right)^2-\left(\dfrac{25}{12}\right)^2=\left(t-\dfrac{3}{2}\right)\left(t+\dfrac{8}{3}\right)\)
\(\Rightarrow A=6x^2\left(x-\dfrac{1}{x}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{x}+\dfrac{8}{3}\right)=0\)
\(=6x^2\left(\dfrac{x^2-1-\dfrac{3}{2}x}{x}\right)\left(\dfrac{x^2-1+\dfrac{8}{3}x}{x}\right)=0\)
\(=\dfrac{6x^2\left(\left(x-\dfrac{3}{4}\right)^2-\left(\dfrac{5}{4}\right)^2\right)\left(\left(x+\dfrac{4}{3}\right)^2-\left(\dfrac{5}{3}\right)^2\right)}{x^2}=0\)
\(=6\left(x-2\right)\left(x+\dfrac{1}{2}\right)\left(x-\dfrac{1}{3}\right)\left(x+3\right)=0\)
Rồi giải ra các nghiệm trên nha !!! ( mình mỏi tay quá, phần sau các bạn làm như cách 1 nha )