Cho bất phương trình \(\left|x^2+x+a\right|+\left|x^2-x+a\right|\le2x\left(1\right)\) Khi đó khẳng định nào sau đây đúng nhất?
A. (1) có nghiệm khi \(a\le\dfrac{1}{4}\)
B. Mọi nghiện của (1) đều không âm.
C. (1) có nghiệm lớn hơn 1 khi a<0
D. Tất cả đều đúng
(làm theo hình thức tự luận)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A\(\left(\dfrac{4}{5},\dfrac{7}{5}\right)\), hai đường phân giác trong vẽ từ B và C có phương trình lân lượt là \(x-2y-1=0\) và \(x+3y-1=0\). Tìm tọa độ điểm A' đối xứng với A qua phân giác góc B và viết phương trình các đường thẳng chứa cạnh của tam giác.