HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6
1)b) \(x^2-y^2+14x+49\)
\(=x^2+14x+49-y^2\)
\(=\left(x^2+2.x.7+7^2\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
Khôi phục các đa thức sau:
1,\(\left(2x-\dfrac{3}{2}y\right)^2=4x^2-6xy+\dfrac{9}{4}y^2\)
2,\(\left(x+2y\right)^3=x^3+6x^2y+12xy^2+8y^3\)
3,\(\left(3x+5y\right)^2=9x^2+30xy+25y^2\)
4,\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=x^3-8y^3\)
GỌI ƯỚC CHUNG LỚN NHẤT LÀ d
3n+2 chia hết d --->4 (3n+2) chia hết d--->12n+8 chia hết d
4n+3 chia hết d --->3 (4n+3) chia hết d--->12n+9 chia hết d
ta có: (12n+9)-(12n+8) chia hết d
---> 1 chia hết d ---> d bằng 1
--->3n+2 và 4n+3 là 2 số nguyên tố cùng nhau
>< TICK MÌNH NHA
a) \( A=5x-x^2\)
\(\Leftrightarrow A=-x^2+2.x\dfrac{5}{2}-\left(\dfrac{5}{2}\right)^2+\left(\dfrac{5}{2}\right)^2\)
\(\Leftrightarrow A=-\left[x^2-2.x\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\left(\dfrac{5}{2}\right)^2\)
\(\Leftrightarrow A=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)
Vậy GTLN của \(A=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)
b) \(B=x-x^2\)
\(\Leftrightarrow B=-x^2+2.x\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow B=-\left[x^2-2.x\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\left(\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Vậy GTLN của \(B=\dfrac{1}{4}\) khi \(x=\dfrac{1}{2}\)
c) \(C=4x-x^2+3\)
\(\Leftrightarrow C=-x^2+4x-4+7\)
\(\Leftrightarrow C=-\left(x^2-2.x.2+2^2\right)+7\)
\(\Leftrightarrow C=-\left(x-2\right)^2+7\)
Vậy GTLN của \(C=7\) khi \(x=2\)
\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow\left(x^2-2.x.2+2^2\right)-\left(x^2-3^2\right)-6=0\)
\(\Leftrightarrow x^2-4x+4-x^2+9-6=0\)
\(\Leftrightarrow-4x+7=0\)
\(\Leftrightarrow-4x=-7\)
\(\Leftrightarrow x=\dfrac{-7}{-4}\)
\(\Leftrightarrow x=1,75\)
Vậy x=1,75
a) \(\left(x^2-9\right)^2+12x\left(x-3\right)^2\)
\(=\left[\left(x-3\right)\left(x+3\right)\right]^2+12x\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left(x+3\right)^2+12x\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left[\left(x+3\right)^2+12x\right]\)
\(=\left(x-3\right)^2\left(x^2+6x+3^2+12x\right)\)
\(=\left(x-3\right)^2\left(x^2+18x+9\right)\)
\(x^3\left(x^2+1\right)^2-49x\)
\(=x\left[x^2\left(x^2+1\right)^2-49\right]\)
\(=x\left[\left(x^3+x\right)^2-7^2\right]\)
\(=x\left(x^3+x-7\right)\left(x^3+x+7\right)\)
\(x^3+3x^2-4\)
\(=x^3+2x^2+x^2-4\)
\(=\left(x^3+2x^2\right)+\left(x^2-4\right)\)
\(=x^2\left(x+2\right)+\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+x-2\right)\)
\(=\left(x+2\right)\left(x^2-x+2x-2\right)\)
\(=\left(x+2\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]\)
\(=\left(x+2\right)\left(x-1\right)\left(x+2\right)\)
\(=\left(x+2\right)^2\left(x-1\right)\)
\(A=4x^2-8x+1\)
\(\Leftrightarrow A=4x^2-8x+4-3\)
\(\Leftrightarrow A=\left(2x-2\right)^2-3\)
Vậy GTNN của \(A=-3\) khi \(2x-2=0\Leftrightarrow x=1\)
a,Để 4n-5 chia hết 13 thì 4n-5 sẽ có dạng 13k
=>4n-5=13k
<=>4n=13k+5
=>\(n=\frac{13k+5}{4}\)