HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tam giác ABC có cạnh BC cố định, điểm A chuyển động sao cho chiều cao AH không đổi. CMR: trọng tâm G của tam giác ABC chạy trên 1 đường thẳng cố định.
Cho góc vuông xOy và điểm A cố định thuộc Oy (A khác O). D là điểm chuyển động trên Ox. Vẽ hình vuông ABCD nằm trong xOy. Khi D di động trên Ox thì B di động trên đường nào?
Cho tam giác ABC vuông tại A, điểm D thuộc AC. Gọi E, F, G, H theo thứ tự là trung điểm của BD, BC, CD. CMR: tứ giác AEFG là hình thang cân.
Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM.
a. CMR: góc HAB = góc MAC.
b. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC. CMR: AM vuông góc với DE.
Cho tam giác ABC, đường trung tuyến AM và trọng tâm G. Gọi I là điểm đối xứng với A qua G. CMR: I đối xứng với G qua M.
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, C đối xứng với A qua Oy.
a. CMR: OB = OC
b. Tính số đo của góc xOy để B và B đối xúng với nhau qua O.
Cho tam giác ABC. D là trung điểm của AB, E là trung điểm của AC. Gọi O là 1 điểm bất kì nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, điểm N đối xứng với O qua E. CMR: MNCB là hình bình hành.
Tìm a, b, c sao cho:
a. \(4x^4+81⋮ax^2+bx+c\)
b. \(x^3+ax^2+bx+c\) chia cho (x+2); (x+1); (x-1) đều dư 8