1. Cho hàm số \(y=x^3-3mx^2+3\left(2m-1\right)x+1\) . Với giá trị nào của m thì \(f'\left(x\right)-6x>0\) với mọi x>2
A. m > 1/2 B. m < -1/2 C. m >1 D. m ≤ 0
2. Cho hai hàm số f(x) và g(x) đều có đạo hàm trên R và thỏa mãn :
\(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2g\left(x\right)+36x=0\) với mọi x thuộc R.
Tính \(A=3f\left(2\right)+4f'\left(2\right)\)
3. Biết hàm số f(x) - f(2x) có đạo hàm bằng 18 tại x=1 và đạo hàm bằng 2000 tại x=2. Tính đạo hàm của hàm số f(x) - f(4x) tại x=1
1. Chứng minh phương trình
\(\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1=0\) có đúng 3 nghiệm phân biệt.
2. Cho phương trình :
\(x^3cos^3x+m\left(x.cosx-1\right)\left(x.cosx+2\right)=0\)
CMR phương trình luôn có nghiệm với mọi m
3. Cho phương trình
\(\left(m^2-m+2021\right)x^3-\left(2m^2-2n+4040\right)x^2-4x+m^2-m+2021=0\)
CMR phương trình có 3 nghiệm phân biệt với mọi giá trị của tham số m
1. Cho hình lập phương ABCD.A'B'C'D' . Gọi M,N lần lượt là trung điểm cạnh A'B' và BC.
a) CMR \(MN\perp AC'\)
b) CMR: \(AC'\perp\left(A'BD\right)\)
2. Tìm a,b,c ∈ R để \(\lim\limits_{x\rightarrow1}\dfrac{2\sqrt{1+ax^2}-bx-1}{x^3-3x+2}=c\)