a) 5-(x-6)=4(3-2x)
\(\Leftrightarrow\) 5-x+6=12-8x
\(\Leftrightarrow\)8x-x=12-5-6
\(\Leftrightarrow\)7x=1
\(\Leftrightarrow\)x=\(\dfrac{1}{7}\)
b)\(\left(3x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(3x+1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-2-5x+8\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\6-2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=3\end{matrix}\right.\)
c)\(\dfrac{x+4}{x+1}-2=\dfrac{2-x}{x}\)
(ĐKXĐ: \(x\ne0;x\ne\left(-1\right)\))
\(\Rightarrow\dfrac{x^2+4x}{x\left(x+1\right)}-\dfrac{2x^2+2x}{x\left(x+1\right)}=\dfrac{\left(2-x\right)\left(x+1\right)}{x\left(x+1\right)}\)
\(\Rightarrow x^2+4x-2x^2-2x=-x^2+x+2\)
\(\Leftrightarrow x^2+4x-2x^2-2x+x^2-x=2\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)(thõa)